Чернов Александр Сергеевич

Кандидат биологических наук

Научный сотрудник (НПП «Питомник лабораторных животных»)

Тел.: +7 (4967) 734244

Эл. почта: alexandrchernov1984@gmail.com


Период обученияСтрана, городУчебное заведениеДополнительная информация
1970 Россия, Нижний Новгород ННГУ имени Н.И. лобачевского Диплом бакалавра биологии;Диплом магистра биологии.

Избранные публикации

  1. Lomakin Y., Arapidi G.P., Chernov A., Ziganshin R., Tcyganov E., Lyadova I., Butenko I.O., Osetrova M., Ponomarenko N., Telegin G., Govorun V.M., Gabibov A., Belogurov A. (2017). Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo. Front Immunol 8, 777 [+]

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  2. Bogachouk A.P., Storozheva Z.I., Telegin G.B., Chernov A.S., Proshin A.T., Sherstnev V.V., Zolotarev Y.A., Lipkin V.M. (2017). Studying the Specific Activity of the Amide Form of HLDF-6 Peptide using the Transgenic Model of Alzheimer's Disease. Acta Naturae 9 (3), 64–70 [+]

    The neuroprotective and nootropic activities of the amide form (AF) of the HLDF-6 peptide (TGENHR-NH2) were studied in transgenic mice of the B6C3-Tg(APPswe,PSEN1de9)85Dbo (Tg+) line (the animal model of familial Alzheimer's disease (AD)). The study was performed in 4 mouse groups: group 1 (study group): Tg+ mice intranasally injected with the peptide at a dose of 250 μg/kg; group 2 (active control): Tg+ mice intranasally injected with normal saline; group 3 (control 1): Tg- mice; and group 4 (control 2): C57Bl/6 mice. The cognitive functions were evaluated using three tests: the novel object recognition test, the conditioned passive avoidance task, and the Morris water maze. The results testify to the fact that the pharmaceutical substance (PhS) based on the AF of HLDF-6 peptide at a dose of 250 μg/kg administered intranasally efficiently restores the disturbed cognitive functions in transgenic mice. These results are fully consistent with the data obtained in animal models of Alzheimer's disease induced by the injection of the beta-amyloid (βA) fragment 25-35 into the giant-cell nucleus basalis of Meynert or by co-injection of the βA fragment 25-35 and ibotenic acid into the hippocampus, and the model of ischemia stroke (chronic bilateral occlusion of carotids, 2VO). According to the overall results, PhS based on AF HLDF-6 was chosen as an object for further investigation; the dose of 250 μg/kg was used as an effective therapeutic dose. Intranasal administration was the route for delivery.