FEBS J, 2014, 281(20):4754-4764

Novel mode of action of plant defense peptides - hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases

The multilayered plant immune system relies on rapid recognition of pathogen- associated molecular patterns followed by activation of defenserelated genes, resulting in the reinforcement of plant cell walls and the production of antimicrobial compounds. To suppress plant defense, fungi secrete effectors, including a recently discovered Zn-metalloproteinase from Fusarium verticillioides, named fungalysin Fv-cmp. This proteinase cleaves class IV chitinases, which are plant defense proteins that bind and degrade chitin of fungal cell walls. In this study, we investigated plant responses to such pathogen invasion, and discovered novel inhibitors of fungalysin. We produced several recombinant hevein-like antimicrobial peptides named wheat antimicrobial peptides (WAMPs) containing different amino acids (Ala, Lys, Glu, and Asn) at the nonconserved position 34. An additional Ser at the site of fungalysin proteolysis makes the peptides resistant to the protease. Moreover, an equal molar concentration of WAMP-1b or WAMP-2 to chitinase was sufficient to block the fungalysin activity, keeping the chitinase intact. Thus, WAMPs represent novel protease inhibitors that are active against fungal metalloproteases. According to in vitro antifungal assays WAMPs directly inhibited hyphal elongation, suggesting that fungalysin plays an important role in fungal development. A novel molecular mechanism of dynamic interplay between host defense molecules and fungal virulence factors is suggested.

Slavokhotova AA, Naumann TA, Price NPJ, Rogozhin EA, Andreev YA, Vassilevski AA, Odintsova TI

IBCH: 4209
Ссылка на статью в журнале: http://doi.wiley.com/10.1111/febs.13015
Кол-во цитирований на 03.2024: 53
Информация пока не проверена модераторами