Dmitrij A. Shagin

Ph.D. (biological sciences)

Senior engineer (Laboratory of Biophotonics)


Selected publications

  1. Shagina I., Bogdanova E., Mamedov I., Lebedev Y., Lukyanov S., Shagin D. (2010). Normalization of genomic DNA using duplex-specific nuclease. BioTechniques 48 (6), 351–355 [+]

    An application of duplex-specific nuclease (DSN) normalization technology to whole-genome shotgun sequencing of genomes with a large proportion of repetitive DNA is described. The method uses a thermostable DSN from the Kamchatka crab that specifically hydrolyzes dsDNA. In model experiments on human genomic DNA, we demonstrated that DSN normalization of double-stranded DNA formed during C0t analysis is effective against abundant repetitive sequences with high sequence identity, while retaining highly divergent repeats and coding regions at baseline levels. Thus, DSN normalization applied to C0t analysis can be used to eliminate evolutionarily young repetitive elements from genomic DNA before sequencing, and should prove invaluable in studies of large eukaryotic genomes, such as those of higher plants.

  2. Mamedov I.Z., Shagina I.A., Kurnikova M.A., Novozhilov S.N., Shagin D.A., Lebedev Y.B. (2010). A new set of markers for human identification based on 32 polymorphic Alu insertions. EJHG , [+]

    A number of genetic systems for human genetic identification based on short tandem repeats or single nucleotide polymorphisms are widely used for crime detection, kinship studies and in analysis of victims of mass disasters. Here, we have developed a new set of 32 molecular genetic markers for human genetic identification based on polymorphic retroelement insertions. Allele frequencies were determined in a group of 90 unrelated individuals from four genetically distant populations of the Russian Federation. The mean match probability and probability of paternal exclusion, calculated based on population data, were 5.53 x 10(-14) and 99.784%, respectively. The developed system is cheap and easy to use as compared to all previously published methods. The application of fluorescence-based methods for allele discrimination allows to use the human genetic identification set in automatic and high-throughput formats.European Journal of Human Genetics advance online publication, 24 February 2010; doi:10.1038/ejhg.2010.22.

  3. Mamedov I.Z., Britanova O.V., Chkalina A.V., Staroverov D.B., Amosova A.L., Mishin A.S., Kurnikova M.A., Zvyagin I.V., Mutovina Z.Y., Gordeev A.V., Khaidukov S.V., Sharonov G.V., Shagin D.A., Chudakov D.M., Lebedev Y.B. (2009). Individual characterization of stably expanded T cell clones in ankylosing spondylitis patients. Autoimmunity 42 (6), 525–36 [+]

    Ankylosing spondylitis (AS) is commonly characterized by clonal expansions of T cells. However, these clonal populations are poorly studied and their role in disease initiation and progression remains unclear. Here, we performed mass sequencing of TCR V beta libraries to search for the expanded T cell clones for two AS patients. A number of clones comprising more than 5% of the corresponding TCR V beta family were identified in both patients. For the first time, expanded clones were shown to be stably abundant in blood samples of AS patients for the prolonged period (1.5 and 2.5 years for two patients, correspondingly). These clones were individually characterized in respect to their differentiation status using fluorescent cell sorting with CD27, CD28, and CD45RA markers followed by quantitative identification of each clone within corresponding fraction using real time PCR analysis. Stable clones differed in phenotype and several were shown to belong to the proinflammatory CD27 - /CD28 - population. Their potentially cytotoxic status was confirmed by staining with perforin-specific antibodies. Search for the TCR V beta CRD3 sequences homologous to the identified clones revealed close matches with the previously reported T cell clones from AS and reactive arthritis patients, thus supporting their role in the disease and proposing consensus TCR V beta CDR3 motifs for AS. Interestingly, these motifs were also found to have homology with earlier reported virus-specific CDR3 variants, indicating that viral infections could play role in development of AS.

  4. Shagin D.A., Rebrikov D.V., Kozhemyako V.B., Altshuler I.M., Shcheglov A.S., Zhulidov P.A., Bogdanova E.A., Staroverov D.B., Rasskazov V.A., Lukyanov S. (2002). A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res. 12 (12), 1935–42 [+]

    A new enzyme — Duplex-Specific Nuclease from Camchatka crab hepatopancreas — was found and characterized. DSN is highly specific to double-strand DNA and exhibits no activity against single-strand DNA and RNA in a wide temperature range. Its unique properties make it a perfect tool for eliminating double-strand DNA from complex mixtures of nucleic acids.