Education

PeriodCountry, cityEducation institutionAdditional info
1975–1977 University of Aachen Medical School
1979 Harvard Medical School Visiting student
1977–1982 University of Göttingen Medical School
1978–1982 Max-Planck-Institut für biophysikalische Chemie in Göttingen Assistant scientist

Selected publications

  1. Petrenko A.G., Ullrich B., Missler M., Krasnoperov V., Rosahl T.W., Südhof T.C. (1996). Structure and evolution of neurexophilin. J. Neurosci. 16 (14), 4360–9 [+]

    Using affinity chromatography on immobilized alpha-latrotoxin, we have purified a novel 29 kDa protein, neurexophilin, in a complex with neurexin l alpha. Cloning revealed that rat and bovine neurexophilins are composed of N-terminal signal peptides, nonconserved N-terminal domains (20% identity over 80 residues), and highly homologous C-terminal sequences (85% identity over 169 residues). Analysis of genomic clones from mice identified two distinct neurexophilin genes, one of which is more homologous to rat neurexophilin and the other to bovine neurexophilin. The first neurexophilin gene is expressed abundantly in adult rat and mouse brain, whereas no mRNA corresponding to the second gene was detected in rodents despite its abundant expression in bovine brain, suggesting that rodents and cattle primarily express distinct neurexophilin genes. RNA blots and in situ hybridizations revealed that neurexophilin is expressed in adult rat brain at high levels only in a scattered subpopulation of neurons that probably represent inhibitory interneurons; by contrast, neurexins are expressed in all neurons. Neurexophilin contains a signal sequence and is N-glycosylated at multiple sites, suggesting that it is secreted and binds to the extracellular domain of neurexin l alpha. This hypothesis was confirmed by binding recombinant neurexophilin to the extracellular domains of neurexin l alpha. Together our data suggest that neurexophilin constitutes a secreted glycoprotein that is synthesized in a subclass of neurons and may be a ligand for neurexins.

    ID:440
  2. Ushkaryov Y.A., Petrenko A.G., Geppert M., Südhof T.C. (1992). Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257 (5066), 50–6 [+]

    A family of highly polymorphic neuronal cell surface proteins, the neurexins, has been identified. At least two genes for neurexins exist. Each gene uses alternative promoters and multiple variably spliced exons to potentially generate more than a 100 different neurexin transcripts. The neurexins were discovered by the identification of one member of the family as the receptor for alpha-latrotoxin. This toxin is a component of the venom from black widow spiders; it binds to presynaptic nerve terminals and triggers massive neurotransmitter release. Neurexins contain single transmembrane regions and extracellular domains with repeated sequences similar to sequences in laminin A, slit, and agrin, proteins that have been implicated in axon guidance and synaptogenesis. An antibody to neurexin I showed highly concentrated immunoreactivity at the synapse. The polymorphic structure of the neurexins, their neural localization, and their sequence similarity to proteins associated with neurogenesis suggest a function as cell recognition molecules in the nerve terminal.

    ID:441
  3. Brose N., Petrenko A.G., Südhof T.C., Jahn R. (1992). Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256 (5059), 1021–5 [+]

    Neurons release neurotransmitters by calcium-dependent exocytosis of synaptic vesicles. However, the molecular steps transducing the calcium signal into membrane fusion are still an enigma. It is reported here that synaptotagmin, a highly conserved synaptic vesicle protein, binds calcium at physiological concentrations in a complex with negatively charged phospholipids. This binding is specific for calcium and involves the cytoplasmic domain of synaptotagmin. Calcium binding is dependent on the intact oligomeric structure of synaptotagmin (it is abolished by proteolytic cleavage at a single site). These results suggest that synaptotagmin acts as a cooperative calcium receptor in exocytosis.

    ID:442
  4. Petrenko A.G., Perin M.S., Davletov B.A., Ushkaryov Y.A., Geppert M., Südhof T.C. (1991). Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353 (6339), 65–8 [+]

    A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.

    ID:443