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Our knowledge on the subject of genetic divergence is ever expanding and
encapsulates a wide spectrum of research areas from the study of single nucleotide
polymorphism to examination of the complex differences of host-pathogen inter-
actions. The understanding of genetic differences is essential to our ability to
address adequately human health issues caused by mono allelic genetic disorders,
altered gene expression in cancers, development of drug resistance and the variety
of ways organisms respond to infections and the environment. Large number of
hybridization-based applications has been developed to query and find such differ-
ences. This review introduces a new method for genetic difference screening — the
primer extension enrichment reaction (PEER) — presented in the context of simi-
lar subtraction-based hybridization methods. PEER is a novel approach to differ-
ence screening and is not intended to replace the existing elegant hybridization
methods but to expand their scope. PEER is tailored to find unknown targets pres-
ent in very low copy numbers and in the context of an imperfect genomic match.
The PEER method takes advantage of the greater hybridization specificity of
shorter oligonucleotides coupled with enzymatic extension specificity.
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ated enrichment, selectively primed adaptive driver RDA, enzymatic degrading sub-
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Abbreviations: AFLP, amplification fragment length polymorphism; ¢cDNA, complementary
DNA; CODE, cloning of deleted sequences; DARFA, differential analysis of
restriction fragments amplification; DD, differential display; DEASH, DNA
enrichment by allele-specific hybridization; dNTP, deoxyribonucleotidetriphos-
phate; DSC, differential subtraction chain; ds, double stranded; EDS, enzymatic
degrading subtraction; GST, genomic signature tag; LCS, linker capture subtrac-
tion; MDR, mispaired DNA rejection; mRNA, messenger RNA; NA, nucleic
acid; NSC, negative subtraction chain; PCR, polymerase chain reaction; PEER,
primer extension enrichment reaction; RaSH, Rapid subtraction hybridization;
RDA, representational differences analysis; RFLP, restriction fragment length
polymorphism; RT, reverse transcription; SABE, serial analysis of binding ele-
ments; SABRE, selective amplification via biotin- and restriction-mediated
enrichment; SAGE, serial analysis of gene expression; SH, subtractive hybridiza-
tion; SNP, single nucleotide polymorphism; SPAD, Selectively primed adaptive
driver; ss, single stranded; SSH, suppression subtractive hybridization; UDG,
uracil deglycosilase.
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1. INTRODUCTION

Identifying and isolating genetic differences without a priori knowledge of the
primary structure, i.e. sequence, of the genetic material, is technically demanding
and laborious. Genetic differences, which can be found at any level of genetic
organization or gene expression, can be caused by gene rearrangements, deletions,
insertions, or by the presence of genomes from extraneous organisms and can lead
to disparate disease outcomes. They can be represented by a single nucleotide poly-
morphism (SNP) (e.g. hepatitis B virus vaccine escape mutants), single allele
differences (e.g. cystic fibrosis, sickle cell anemia, Tay Sachs disease and over 4000
other genetic diseases), gene expression differences in the various cells of one organ
that occur in order to execute the specific function of the tissue or organ, gene
expression at different stages of an organism’s development that provide for cell dif-
ferentiation related to growth and development, genetic differences between organ-
isms, sex-related differences, complex genetic disorders (e.g. Alzheimer, diabetes),
and gene expression prompted by the interaction of different organisms, such as
pathogen-host interactions, or in response to different environmental stimuli.

Most genetic differences can be queried by using RNA, DNA, cDNA, or total
nucleic acids (NAs), depending on the experimental goal. Direct screening of large
plasmid or phage libraries, the earliest approach used for identifying target NAs
of unknown sequence, can be inefficient and labor-intensive [1]. Over the last two
decades, several new approaches have been developed to improve the efficiency of
this task. They can be divided into two broad categories: (1) subtractive
approaches, such as representational differences analysis (RDA) [2] and its vari-
ants [3,4], differential subtraction chain (DSC) [5], selective amplification via
biotin- and restriction-mediated enrichment (SABRE) [6], suppression subtractive
hybridization (SSH) [7], differential display (DD) [8], and others [9,10]; and
(2) high-throughput [11,12,13,14,15,16,17] and microarray-based [18,19] methods.

All subtractive approaches are based on molecular comparison of two specimens:
(1) a “tester” — a specimen that is presumed to contain the unknown target of inter-
est, and (2) a “driver” — a specimen that is a perfect genetic match for the tester but
is not believed to contain the target [20]. The comparison is usually done by hybridiz-
ing the two specimens to each other, eliminating the hybrids they have in common
and screening the final product for a subset of molecules that reflect the differences
between the two. Subtractive methods are often used in molecular studies because of
their relative simplicity and high efficiency.

High-throughput methods approach gene expression in foto and are based on
miniaturization, artificial nucleic acid synthesis, and hybridization and often require
the heavy use of bioinformatics for data management. In recent years, the integra-
tion of subtractive approaches into high-throughput methods [21,22,23,24] has
generated efficient methodology for identifying differentially expressed sequences.

Among the subtractive techniques, RDA and the closely related SSH are the
most popular and have been used successfully to recover unknown sequences and
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differentially expressed genes. SSH has been used to find a number of differentially
expressed RNA messages [25,26,27,28,29,23] and to identify a new calicivirus in
walrus [30]. The GBV-A and —B viruses [31] as well as TT virus (TTV) [32] (all
suspect viral hepatitis agents) were discovered by RDA. In practice, SSH can
enrich a target gene by approximately 3 x 103 times [7,1]. Although impressive,
this performance is nonetheless insufficient for the detection of an infectious
agent whose genomes might be present at only a few copies in the specimen of
interest [33], for example, in chronic carriers the levels of hepatitis C virus might
be as low as 10° or less, yet the disease persists and the individual is still a poten-
tial source of infection. Such levels are below the molecular resolution of the
current enrichment methods. A common limitation of all subtractive
approaches is their requirement for perfect hybridization, which goes hand in
hand with the need for an abundance of ideally matched drivers. Since such
conditions can rarely be achieved, most subtraction methods are intrinsically
biased against single-stranded, low-copy-number molecular species [31,33]. The
enrichment of the target of interest is usually achieved by hybridization between
long DNA fragments and, in the case of cDNA generated by random priming,
a heterogeneous population of DNA fragments. If present in low numbers, these
molecules have little chance to form complete hybridization products after dena-
turing. Another limitation of most subtraction methods is that they use the
target of interest as a potential PCR template only. If present at very few copies
or if it has remained single stranded, the target might fail to amplify efficiently.
In addition, many subtraction approaches rely on the presence of a poly-A tail
to generate starting material and consequently are not suitable when working
with DNA or RNA that is not polyadenylated.

Microarray approaches tend to be costly and require some prior knowledge
of the sequence of interest. The more recent sequencing-by-hybridization
approaches and massive parallel sequencing methods [13,14,16], which have
been proposed as alternative solutions to uncovering differences, are also expen-
sive and might not be suitable for small sample volumes.

The primer extension enrichment reaction (PEER) method belongs to the
category of subtraction techniques. It is based on two new strategies: (1) the use
of tester DNA to generate both PCR primer and template, and (2) the selective
inactivation of primers containing sequences common to the tester and driver
to ensure preferential amplification of templates that contain sequences unique
to the tester. PEER improves the sensitivity of current subtraction methods
and takes direct advantage of the unknown target’s unique specificity.

2. PRIMER EXTENSION ENRICHMENT REACTION
2.1 Method Outline

A general outline of PEER is presented in Figure 1. Total NA is extracted from
a tester and a driver specimen and used in a modified SMART cDNA protocol
(Clontech, Palo Alto, CA) to generate dsDNA with two different sets of
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Figure 1. Primer extension enrichment reaction (PEER). Panel A: Generation of dsDNA from total
nucleic acid (NA). 1. Tester NA (white and gray rectangle) is split in two aliquots and denatured; driver
NA (white rectangle) is denatured as well; 2. Single strands are reverse transcribed (RT) by SuperScript
RT with three different primers — AFMmeIN6* for the first Tester aliquot, T2N6 (diagonal fill rectan-
gle) for the second aliquot, and DONG6 (shadowed rectangle) for the driver; 3. Reverse transcription
switches templates and copies annealed SMART primers (SMART technology, Clontech); 4. RT prod-
ucts are amplified with Advantage2 Polymerase to yield Tester] dsDNA with primers AMmeIPCR
(black rectangle), Tester23 dsDNA with T3PCR (vertical fill rectangle) and T2PCR (diagonal fill rec-
tangle), and driver bio-dsDNA with DObioPCR biotinylated at the 5’-end (shadowed rectangle with cir-
cle) Panel B: Processing of Tester]l dsDNA. 1. DNA is cleaved by a cocktail of restriction enzymes that
leave 3’-GC protruding ends; 2. Ends are treated with the Klenow fragment of DNA Polymerase I in
the presence of dCTP only and then ligated to AMmelAdapter; 3. Tagged fragments are cut to uniform
size by Mmel to create multiple AMmelPrimers. Panel C: Blocking reaction. 1. AMmelPrimers gener-
ated from Tester] dsDNA are extended on Driver bio-dsDNA template in the presence of biotinylated
ddNTPs (red circles) and ThermoSequenase; 2. Biotinylated molecules are captured with streptavidin-
coated magnetic beads (white crescent with gray bar) and removed from the reaction.

*black rectangles — primers AFMmeIN6, AFMmelISMART, AMmelPCR, AMmelAdapter
(Continued)
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Figure 1. cont’d. Panel D: Retrieval of targets of interest from the Tester23 dsDNA. 1. Capture
PCR — AMmelPrimers that were not blocked and removed in the preceding steps are added to
Tester23 dsDNA and in the presence of regular ANTP are annealed and extended to capture the
targets of interest; 2. Regular PCR amplification of the capture products with different primer
combinations.

primers for the tester (called Tester 1 cDNA and Tester 2 cDNA primers in
Table 1) and one set for the driver (Driver cDNA primers in Table 1). The prod-
uct is referred to as dsDNA to distinguish it from cDNA since it is generated
from total NA instead of from RNA alone (Figure 1A). Tester | dsSDNA mate-
rial is converted into small fragments by extensive endonuclease cleavage and
then tagged by ligation to a specially designed adapter. The 3’ end of the
adapter incorporates a recognition site for a class IIS restriction endonuclease
[34, 35]. After ligation, the fragments are cleaved with the appropriate IIS
enzyme to create oligonucleotides with unique sequence at the 3’-end derived
from the tester and a 5’-end derived from the adapter (Figure 1B). These
adapter-tagged oligonucleotides are annealed to the driver dsSDNA template
and extended in the presence of biotinylated ddNTPs. All oligonucleotides that
prime a reaction from the driver template can acquire biotinylated ddNTP. This
event blocks any further extension and allows the removal of the biotinylated
molecules from the reaction by use of streptavidin-coated magnetic beads.
Primers that share driver sequences are blocked and removed leaving only
primers with unique sequences that can only be found in the tester (Figure 1C).
In the presence of Tester23 dsDNA and dNTPs, these oligonucleotides can
prime an extension reaction from the fragments unique to the tester (target cap-
ture). This step converts the tagged primers into DNA templates suitable for
PCR amplification by oligonucleotides containing only the adapter sequences
or in combination with T2PCR or T3PCR oligonucleotides. The last step in
PEER is a standard PCR amplification with primers containing only adapter
and T2PCR/T3PCR sequences that can be used without any molarity restric-
tions. The final step is expected to generate collection of fragments of different
size (Figure 1D).
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Table 1. Primers used in the PEER study
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Primer sequence 53’ Name Function
Mmel experiments
AATGCAGACACAGAAGGTCCAT

CCGAC AFMmel TESTER Mmel adapter forward
P-GGTCGGATGGACCTTCTGTGT

CTGC ARMmelP! TESTER Mmel adapter reverse
GCTGCAGACACAGAAGGTCCATC

CGACNNNNNN AFMmeIN6 TESTER 1 cDNA
GCTGCAGACACAGAAGGTCCATC

CGACGGG AFMmeISMART TESTER 1 cDNA
CAGACACAGAAGGTCCATCCGAC AMmelPCR TESTER 1 cDNA PCR
ACACTAGAGCATGCGTCAAGAG

AANNNNNN T2N6 TESTER 23 cDNA
ACACTCCAGGAGGTCAGAAACAAC

GGG T3SMART TESTER 23 cDNA
ACACTAGAGCATGCGTCAAGAGAA T2PCR TESTER 23 ¢cDNA PCR
ACACTCCAGGAGGTCAGAAACAAC T3PCR TESTER 23 cDNA PCR
AAGCAGTGGTATCAACGCAGAGTA

NNNNNN DONG6 DRIVER cDNA
AAGCAGTGGTATCAACGCAGAGTA

CGCGGG DOSMART! DRIVER cDNA
Bio-AAGCAGTGGTATCAACGCAGA

GTA DObioPCR DRIVER ¢cDNA PCR
Bpml experiments
ACACTCGAGGAGGTCTGGAGIIIIIT PEER1BpmN6  TESTER 1 cDNA
ACACTCGAGGAGGTCTGGAGGG PEER1BpmG TESTER 1 cDNA
AACACTCGAGGAGGTCTGGAG PEER1BpmAF  TESTER Bpml adapter forward
CTCCAGACCTCCTCGAGTGTG PEER1BpmAR  TESTER Bpml adapter reverse
GAGCTGTGGTGAGTTGGTTGG

AAIIIIIT PEERT7N7 TESTER 78 cDNA
AAGCAGAGGCAGCATTGGAGGG PEERT8G TESTER 78 cDNA
AGCTGTGGTGAGTTGGTTGG PEERT7 TESTER 78 cDNA RCR
AGCAGAGGCAGCATTGGAGG PEERTS TESTER 78 cDNA RCR
AAGCAGTGGTATCAACGCAGAG

TATIIIIIT DONG6 DRIVER cDNA
AAGCAGTGGTATCAACGCAGAG

TACGCGGG DOSMART? DRIVER ¢cDNA
AAGCAGTGGTATCAACGCAGAGTA DOPCRbio DRIVER ¢cDNA PCR
Control primers
AATGCAGACACAGAAGGTCCAT

CCGACTAATACGACTCACTATAGGG  AT7? PEER control primer
AATGCAGACACAGAAGGTCCATCCG

ACGAAACAGCTATGACCATGAT ASK? PEER control primer

I = 5-nitro indol; N = random base

'P indicates that the oligo was phosphorylated to improve ligation

2According to the SMART ¢cDNA technology (Clontech, Palo Alto, CA)
3These primers are not part of PEER but were used to monitor the success of the protocols’ steps

using a “control” template
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2.2 Discussion

The proof of the PEER concept was tested in preliminary experiments. PEER
is intended to find unknown targets at unknown and potentially very low
concentrations. This goal was challenged in series of experiments designed to
identify the minimum amount of a target DNA present in the background of a
complex mixture that could be found and “captured” using oligonucleotides
that match the target sequence but were used in very low concentrations. If we
could create unique primers from the unknown target DNA itself, we would
have the ideally matched oligonucleotides for its amplification. However, their
molarity may not exceed that of the template. Since such unfavorable primer
concentrations would not promote a PCR reaction, we needed to be able to
tag them with a different 5’-sequence that we knew of and that could later be
supplied in excess. We synthesized oligonucleotides so that the 20 nucleotides
at the 3’-terminal match the template and the remaining 5’-nucleotides cannot
be found in the template; these were named “capture primers”. We then
conducted experiments to determine whether the target template could be
amplified after “capture” of the target by only the mismatched portion of the
capture oligonucleotides. The results indicated that adapter-primed reactions
(i.e. PCR with primers whose sequences did not exist in the original template)
yielded amplification products from as little as 0.063 amol of template (1360
copies/ml) and with as little as 4 fmol of capture primers.

To test whether a large number of primers could be successfully, specifically,
and completely blocked by di-deoxytermination, we tested a variety of poly-
merases and a range of nucleotide concentrations using an artificial template
(pB6, a fragment of WCV cloned in pTAdvantage vector) and 50 pmol each of
SK and T7 generic primers. After multiple PCR rounds of extension and block-
ing in the presence of ddNTPs, an aliquot of the product was used in regular
PCR in the presence of a fresh master mix containing conventional Taq
Polymerase (Roche) and regular dNTPs (Roche). The best results, as measured
by the absence of product in the reactions to which ddNTPs were added initially,
were achieved with Thermo Sequenase [36]. We also observed blocking by Vent
(exo-) polymerase and Taq polymerase with a ddNTP: dNTP ratio of 10:1, but
Thermo Sequenase remained the enzyme of choice because it generated consistent
results under all experimental conditions.

The new PEER method exploits unique target sequences by creating primers
from the double-stranded material of interest and then using an intact aliquot of
the material as a template for amplification. The first strand of double-stranded
DNA (dsDNA) is created using total NA as a template for reverse transcription
with primers that have a random hexamer at the 3" end and the appropriate
adapter sequences at the 5" end, so that these can be used in a subsequent PCR
step. The use of an enzyme such as SuperScript II Reverse Transcriptase, a deriv-
ative of M-MLV with DNA polymerase activity [37], ensures that single-stranded
RNA (ssRNA), DNA, or RNA: DNA hybrids will be copied into cDNA and
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enter the enrichment process. Once priming sites are generated on both ends of
the fragments the product can be exponentially amplified by SMART PCR to
generate dSDNA. This approach maintains the correct representation [38] of the
NAs entering the protocol and, via the PCR step, supplies a renewable source of
the target material. We found that SuperScript II Reverse Transcriptase generated
good results for both templates tested, one from a DNA virus (hepatitis B virus —
HBYV) and one from an RNA virus (WCV). In both cases, we had previous knowl-
edge of the viral titer, and the process of cDNA generation that includes a Smart
PCR step did not alter it. The initial primer design (Table 1) included 5-nitro-indol
instead of random bases at the 3’-end of the RT primers. The random bases were
eventually favored because they provided a higher efficiency of the PCR step;
additional experiments, not discussed here, showed that the 5-nitro-indol’s higher
affinity to itself hinders the reaction performance. The PEER protocol can be
modified for use with other pre-dsDNA/cDNA procedures. DNase/RNase
treatment, filtration, ultracentrifugation, gradient separation, and other procedures,
may be incorporated, depending on the application.

Once generated, the double-stranded material is converted into unique
primers by extensive endonuclease cleavage (Figure 1B). This strategy ensures
that the primers perfectly match the unknown template. To digest the dsSDNA
into small fragments (i.e. create multiple “primers” from the unknown target),
we tested two approaches. First, we used the unique 2.5-cutter CviJI* (cuts
RGCY, and RGCR/YGCY, but not YGCR) to generate a maximum number of
small fragments with one treatment [39]. CviJI has proven to be a useful tool for
generating probes from low-copy-number DNA sequences by thermal-cycle
labeling [40]. A drawback of using this enzyme is the formation of blunt ends,
which interfere with the efficient ligation of adapters because large numbers of
fragments are available to religate to themselves. This inefficiency was confirmed
experimentally. As an alternative to CviJI*, we used a cocktail of four-cutter
enzymes (Acil, Hpall, HinP11, Maell, and Taql) that have different recognition
sites (CCGC, CCGG, GCGC, ACGT, and TCGA, respectively) but leave GC-
5" overhangs. After the digestion, the DNA fragments were treated with Klenow
DNA polymerase in the presence of dCTP to fill in the 5’-overhangs with one
nucleotide. This step converts the self-complementary 5’-GC protrusions into
5’-C overhangs that can ligate only to the synthetic adapters as specifically
designed. To convert these short DNA fragments into primers that can be recov-
ered and used in the enrichment protocol, they were “tagged” by ligation to
adapter sequences (Figure 1B).

In the context of the human genome (3.2 Gb) [41], 18 nt is the absolute
minimum length (x) required for the creation of a specific oligonucleotide,
calculated by the formula Nx/4* <1, where N is the size of the target. For a large
viral genome (e.g. N = 100,000 nt), this minimum length is reduced to 10 bp.
However, if the aim is to distinguish a viral genome of that size within the
context of the human genome as a background, a minimum size of 18 bp is
needed to ensure unique sequence specificity. For viral discovery, the PEER



134 L. M. Ganova-Raeva

protocol uses Mmel [42] adapters to generate primers from the double-stranded
cDNA tester with a 5’-end sequence that is artificially introduced by the adapter
and a 3’-end that is derived from the target cDNA sequence (Figure 1B). With
minor modifications, the adapter can alternatively incorporate sites for other IIS
restriction enzymes, such as Bpml, Bsgl, and Eco571, that cleave 16 nt down-
stream of their recognition sites, a feature that might be useful for other applica-
tions (e.g. SNP discovery). Class IIS endonucleases that leave 5-protruding ends
[34] are not suitable for PEER because they will generate self-blocking primers.
The IIS cleavage allows all cDNA fragments of various lengths that have acquired
adapters to be trimmed to a uniform length. This generates a population of
molecules with 3’-ends that are derived directly from the target of interest and that
are suitable for extension reactions at a reasonably narrow temperature range.
Such approach represents a novel use of these class IIS enzymes.

The enrichment efficiency of PEER was tested on serum containing HBV
with a titer 3 x 10® IU/ml and Vero monkey kidney (VMK) cell culture infected
with WCV at an inoculums’ size of 10* copies. The HBV-containing serum was
diluted tenfold four times with normal human serum pool to create testers with
different viral loads, i.e. 3 x 107, 3 x 10°, 3 x 10°, and 3 x 10° IU/ml. dsDNA
fragments before the enrichment protocol and the corresponding products after
the enrichment were cloned in Escherichia.coli libraries. Such paired libraries
were generated for all tested serum dilutions. As previously established [1], to
find a high titer virus (e.g. 10® copies/ml) within a library representing the entire
human genome one needs only to search through about 100 of the clones since
~2-3% of this library should contain viral sequences; however, if the viral titer
is 10%, one needs to screen 107 clones. To circumvent exhaustive screening by
hybridization of libraries generated from serum containing low viral titer we
resorted to evaluating the copy number of targets of interest in the dSDNA by
PCR and hybridization. The PCR approach, although very reliable when used
on the dsDNA material prior to enrichment, cannot be applied to PEER prod-
ucts because they might not consist of fragments that will contain both priming
sites. To assess the presence of the targets of interest in the PEER product we
did spot hybridizations and, from the corresponding libraries, isolated colonies
at random and sequenced them. After PEER, the serum with initial titer of 3 x
10° IU/ml was enriched 5.3 x 10? times for HBV sequences and the one with
initial titer 3 x 103 IU/ml was enriched 1.3 x 10* times. The observed higher
enrichment values that were obtained for the lower titer library may be
explained by the fact that the tester material was being diluted with the driver
pool, thus creating a population almost perfectly matched to the driver and
hence achieving a greater blocking efficiency. In fact, when enriching the low
titer WCV virus with a perfect driver (noninfected VMK cells) the achieved
enrichment value was 4.45 x 10%,

PEER is a conceptually new approach for the subtractive enrichment of com-
plex nucleic acid mixtures and represents a novel use for both class IIS restriction
enzymes [43] and di-deoxytermination. Unlike the other techniques that are
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based on subtractive hybridization of long DNA molecules that are eventually
used as PCR templates, PEER centers on selective blocking of short DNA frag-
ments through hybridization and highly specific enzymatic extension, and the use
of these fragments as PCR primers. In addition, because PEER was designed to
create normalized starting material that is double stranded, the method does not
have preference for DNA or any particular type of RNA. PEER is suitable for
use with samples of limited volume and is very cost efficient, especially when
compared to new high-throughput sequencing methods. We did not observe loss
of integrity of the background DNA, i.e. no recombination or insertion/deletion
events. We did find some primer multimers among the clones, but did not quan-
tify them since we filtered the sequence data for background vector or primer
noise prior to analysis. PEER should also allow for several rounds of enrichment,
as do RDA and SSH, i.e. the final PEER product can be digested again with the
GC cutter cocktail, adapter-tagged, cut with Mme 1 and blocked on the same
driver or even on an alternative driver, depending on the experimental goals. We
have not yet attempted such experiments.

Finally, the PEER method is flexible and can be modified for the discovery of
single-nucleotide polymorphisms (SNPs) or minor differences in allele states as
well as for other subtraction applications such as pathogen discovery and
differential expression of genes. Although descriptions of these other uses of
PEER are beyond the scope of this chapter, a review of the PEER protocol
should identify steps that may be modified to increase the versatility of the tech-
nique. For example, one may use different restriction enzymes separately or in
various combinations to fragment the dsDNA. The primers can be created with
the use of DNAses or exonucleases after the tagging step to generate fragments
with randomly distributed ends suitable for a total comparative SNP analysis of
the target NAs.

Our findings demonstrate that PEER is very robust, can be applied to differ-
ent targets, and can detect NAs of unknown sequence at very low concentra-
tions. In our experiments, PEER outperformed the commercially available SSH
technique [44]. The method was recently successfully applied to a variety of
viruses representing different genome structures — human herpesvirus and
Ectromelia virus (dsDNA), human echovirus, West Nile virus, and human res-
piratory syncytial virus (ssRNA), Orthoreovirus (polysegmented ds RNA),
porcine circovirus (circular ssDNA) and was able to recover viral genetic mate-
rial from as little as 103 pfu [45].

2.3 PEER Protocol

2.3.1 Nucleic acid extraction

Total NA is extracted from 100-200 pl of serum or cell culture using
Masterpure complete kit (Epicenter Biotechnologies, Madison, WI) or High
Pure viral nucleic acid extraction kit (Roche) and resuspended in 10 ul 10 mM
Tris (pH 8-8.5).
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2.3.2 Modified SMART protocol

About 5 pl of the extracted NA is reverse transcribed (RT) with SuperScript 1T
(Invitrogen, Carlsbad, CA). Two RT reactions are performed for the tester, one
using 10 pmol each primer AFMmeIN6 and AFMmeISMART, and the other
using 10 pmol primers T2N6 and T3SMART. Primers DOSMART and DON6
are used for the driver reaction. Reaction volumes and conditions are described
in the SMART cDNA synthesis protocol (Clontech). After synthesis, the
enzyme is heat-inactivated and the product diluted with 40 ul of TE.

2.3.3 First PCR amplification

About 10 ul of the RT product is amplified with Advantage 2 Polymerase
(Clontech) as recommended in the Smart cDNA protocol and using the corre-
sponding PCR primers (AMmelIPCR for Tester 1, T3PCR, and T2PCR for Tester
23 and DObioPCR for the driver) in triplicate reactions under the conditions
suggested by the manufacturer. The amplification parameters are 95°C/1 min, and
(95°C/3 s, 68°C/3 min) x 28 cycles. The dsDNA is purified on a Qiagen PCR purifi-
cation column (Qiagen, Inc., Valencia, CA) and eluted in 75 pul 10mM Tris (pH 8).

2.3.4 Digestion with restriction endonucleases

About 70 pl of the Tester 1 dsDNA are digested overnight with Hpall (MBI
Fermentas Amherst, NY), HinP1I, Acil (NEB Ipswich, MA), Maell (Roche
Molecular Biochemicals, Germany), and Taql (NEB) using 1 pl of each enzyme
and Taql buffer (NEB) at 37°C. After digestion, the enzymes are heat-inacti-
vated, with the fragments purified through a QIAquick PCR purification kit
and eluted in 55 ul 10 mM Tris (pH 8).

2.3.5 Klenow treatment

The ends of the fragments are filled in with Klenow polymerase (Roche) in the
presence of dCTP for 1 h at 37°C. The enzyme is then heat-inactivated; the reac-
tion mixture purified with QIAquick nucleotide removal column (Qiagen), and
the product eluted in 50ul 10 mM Tris (pH 8).

2.3.6 Adapter ligation

Double-stranded adapters are prepared by mixing the forward (AFMmel) and
reverse (ARMmelP) adapter primers (Table 1) at equimolar ratio (200 pmol
each), heating to 96°C for 5 min and slowly cooling to room temperature. 200
pmol of the adapter is ligated overnight to 45 ul of dCTP-filled-in Tester 1 frag-
ments. The ligation products are purified to remove the T4 ligase and buffer with
QIAquick nucleotide removal column and eluted in 55 pul 10 mM Tris (pH 8).

2.3.7 Mmel digestion

The ligation products are digested with SU Mmel (NEB) for 2 hrs. The cleaved
DNA is resolved in 10% polyacrylamide gel, the resulting 50 bp fragment is cut
out, isolated from the gel with QIAquick gel extraction kit (Qiagen) and
resuspended in 50 pul 10mM Tris (pH 8).
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2.3.8 Blocking of Mmel-tagged primers

About 25 pl of the fragment is used as primer with 10 pl Driver bio-dsDNA
template in the presence of 2.5 ul each ddNTPs-bio (Biotin-11-ddNTPs,
NEN Life Science Products Inc., Boston, MA), 0.025 mM each dNTPs (Roche)
and Thermo Sequenase (Amersham Pharmacia Biotech, Inc., Piscataway, NJ).
The blocking reaction is carried out as follows: 96°C/3 min; and (95°C/2 s,
55°C/20 s, and 68°C/20 s) x 55 cycles. The product is purified with QIAquick
nucleotide removal kit to remove the excess ddNTPs and eluted in 100 pul 10 mM
Tris (pH 8).

2.3.9 Removal of biotinylated products

The cleaned product is heated to 95°C, and 50 ul of streptavidin-coated mag-
netic beads are added (SPHERO Streptavidin Magnetic Particles from
Spherotech, Inc., Libertyville, IL). After 10 min incubation at >60°C, the beads
are captured on a magnet rack (Qiagen) and the supernatant removed to a fresh
tube, ensuring that the temperature remains above 55°C.

2.3.10 Capture reaction

About 50 pl of the supernatant (purified nonblocked primers) are used in a 100
ul capture reaction with 5 pl of the Tester 23 cDNA as template under the
following conditions: 95°C/2 min; (95°C/20 s, 45°C/30 s, 72°C/2 min) x 10 cycles;
(95°C/20 s, 52°C/30 s, and 72°C/2 min) x 30 cycles; and 72°C/7 min.

2.3.11 Final PCR

About 5 pl of the capture product is amplified in a 100 pl final reaction volume
with primers AMmelPCR and T2PCR, AMmelPCR, and T3PCR or
AMmelPCR alone under the following conditions: 95°C/2 min, and (94°C/10 s,
60°C/20 s, and 72°C/90 s) x 30 cycles. The product is quantified, cloned, and
sequenced.

3. OTHER SUBTRACTION AND HYBRIDIZATION BASED
METHODS FOR DIFFERENCE SCREENING

Subtractive hybridization is the core approach behind most techniques
described here. Differentiating and excluding/subtracting nucleic acid species
by hybridization or by physical comparison can be accomplished in a creative
variety of ways.

3.1 Differential Screening

Differential screening [46] enables comparison of two complete mRNA popula-
tions by probing a cDNA library generated from one of the samples with labeled
fragments representing one of the RNA populations. A summary schematic
representation of the approach, also known as plus/minus screening, is shown
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on Figure 2. This protocol can be very thorough and informative because it
theoretically allows the acquisition of a complete picture of all mRNAs
involved. In actual experimental settings, however, the method has always
proved to be very laborious [47]. It requires the building of a good cDNA library
that has an adequate number of clones plated at manageable density and the
generation of several lifts from said library, that need to have adequate and
approximately equal amount of the clone/plaque material on them, so that the
positive—negative hybridization calls after the screening are not biased by clone
copy numbers. The hybridization itself needs to be done with limiting concen-
tration of the probe as to distinguish differences between mRNA copy numbers in
the compared populations; such conditions can be difficult to achieve. Even
though many of the technical drawbacks that come with cDNA library con-
struction are no longer a great technical challenge today, there still are obstacles
that cannot be easily overcome. The major disadvantages are: the intensive labor
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Figure 2. Differential screening or plus/minus screening (DS). 1. Total mRNA from tracer/cancer
material (white and gray rectangle) and mRNA from driver/healthy material (white rectangle) are
reverse transcribed in the presence of random hexamers and oligo(dT) primer; 2. cDNA is ligated
to restriction site linkers (vertical diagonal fill rectangle) and the product is cloned in appropriate A-
expression vector. Aliquots of the mRNA are labeled with P32-ATP (black fill rectangles”) and
polynucleotide kinase, or alternatively the corresponding cDNA is synthesized in the presence of
P2-dNTPs; 3. Duplicate plaque lifts from the cDNA library are made on nylon membranes; 4. One
set of the membranes is probed with the labeled tracer mRNA and the duplicate set is probed with
the labeled driver mRNA; 5. Plaques that do not give hybridization signal when probed with the
driver mRNA are isolated form the corresponding original plate used to create the lift and subject
to secondary screening and further analysis.
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required, poor reproducibility, bias against less abundant mRNA species, and
the requirement for multiple controls and secondary screening. Successful uses
of this approach include: differential expression studies of polycystic kidney
disease [47], TNF-induced genes [48], and early embryonic differentiation [49].

3.2 Subtractive Hybridization

The search for differentially expressed genes [50,46] and the development of
subtractive hybridization have gone hand in hand [51]. Subtractive hybridization
is any hybridization applied to remove common material that can interfere with
the desired outcome of a screen and may be applied to the test sample of inter-
est, to the probe designed to look for targets of interest [52,53,54,55], or to both
[56]; it is depicted here in Figure 3. The best enrichment obtained by subtractive
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Figure 3. Subtractive Hybridization (SH). 1. Total mRNA from tracer/cancer material (white and
gray rectangle) and mRNA from driver/healthy material (white rectangle) are reverse transcribed in
the presence of random hexamers and oligo(dT) primer; 2. cDNA is ligated to cloning site linkers
and the product is cloned in a A-bacteriophage vector; 3. Single-stranded phage DNA is recovered
by transfection of Escherichia coli with in parallel with a helper phage; 4. Driver phage is biotiny-
lated; 5. Tenfold excess of the driver is mixed with the single-stranded tester material and allowed to
hybridize; 6. Biotinylated homo and heteroduplex molecules are removed by avidin agarose or strep-
tavidin and the remaining subtracted ssDNA is taken into another round of subtraction with fresh
driver; or converted to dsDNA with Klenow enzyme and cloned (subtractive cloning) or labeled and
used as positive hybridization probe on libraries containing the target of interest; or amplified by
PCR and subsequently used in the same applications.



140 L. M. Ganova-Raeva

hybridization followed by amplification and cloning has been between 100- and
1000-fold, depending on the target [55,20]; the kinetics of the process have been
described previously [57,58]. An interesting example of recent work that uses
straightforward subtractive hybridization is the isolation of all messages
involved in the utilization of complex polysaccharides from Aspergillus nidulans
[59]. The approach used was to collect mRNA from fungi grown on variety of
polysaccharide sources different from glucose, and to pool and clone those
together without any other selective enrichment or PCR. The resulting library
was then probed by negative subtractive hybridization with labeled mRNA from
Aspergillus grown in the presence of glucose only, which resulted in the isolation
of over 3000 negative clones that generated more than 2000 unique contigs. To
confirm their function, the clones were arrayed and probed with cDNAs from
fungi grown under different sugar conditions. Subtractive hybridization has
been applied with success to uncover tumor suppressor genes [60]; to find mod-
erately induced sequences from humans [61] and mycobacteria [62], especially
when coupled with PCR; and to study monoallelic imprinted genes [63] and
organ-specific gene expression [64].

3.3 Subtractive Cloning

Subtractive cloning takes the differential screening approach a step further by
constructing cDNA libraries that are already enriched in differentially
expressed sequences [50,46,65]. It is achieved by generating single-stranded
cDNA from the material of interest and hybridizing it to excess mRNA from
another cell type. The double-stranded hybrids are the genes expressed in
common and the single-stranded mRNAs represent the ones unique to the
cell of interest that can be further cloned and validated. This approach has
the revolutionary advantage of removing the background of common genes
that otherwise interferes with the desired outcome. The main disadvantages
are the requirement for large quantities of mRNA (only 5% of the general
RNA population) and inefficient recovery of the single-stranded material,
which thus limits the availability of cDNA for cloning. The approach has
been used successfully [47] to isolate a new member of the Ras super family,
the T-cell antigen receptor, the murine IL-4 receptor, etc. The subtractive
cloning has also seen a great benefit from coupling with methods that take
advantage of poly-A tailing of most mRNAs [66], PCR [67,68], secondary
hybridization [69] or a combination of these [70,71,72],

3.4 Differential Display

DD methods are not true subtraction methods but can nonetheless play a great
role when choosing an approach to find unique sequence characteristics. Many
of the methods described below can be used in combination with subtraction
technique.
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The mRNA DD [8] or arbitrarily primed PCR [73] came about as an alterna-
tive to the differential screening. It takes advantage of the power and specificity
of PCR and does not require a priori construction of libraries. In its original
design, the method was intended to display only a subset (1/12) of the original
mRNA population (Figure 4). However, it retains great flexibility as to the kind
of arbitrary or specific oligonucleotides used (gene-specific, gene-family spe-
cific, anchor-polyA-tail, etc.), as these can be employed in variety of combina-
tions to create subsets of fragments that are unbiased and suitable for screening.
Its advantages are the use of amplification, the ability to query with different
sets of oligonucleotides, and greater reproducibility and opportunity to com-
pare more than two specimens of interest at a time. However, regardless of the
size of the subpopulation displayed, the background can mask true differences;
rare transcripts can be missed in the PCR step; multiple primer sets may be
required to cover adequately the entire mRNA population, and the results
usually reflect uniquely induced rather than up-regulated or down-regulated
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Figure 4. Differential display (DD). Generation of representations from mRNA. 1. mRNA from
treated material (white and gray rectangle) and mRNA from untreated material (white rectangle) are
reverse transcribed with 5’-T|,CA to allow anchored annealing to approximately one twelfth of the
entire mRNA population; 2. cDNA is the PCR amplified with primers T;,CA and a 10 mer Ltk3
(black rectangles) and labeled with radionuclide (0-*3S) to allow visualization on polyacrylamide gel
by autoradiography; 3. Fragments bellow 500 bp in size are resolved on a DNA sequencing gel;
4. Resolved fragments display the differences between the compared (could be more than two)
specimens and after thorough screening the different bands are isolated form the gel; 5. Isolated
fragments are reamplified, cloned, and analyzed.
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gene expression. Attempts to circumvent these disadvantages include primer
redesign, increasing the cDNA concentration, increasing the 5'-primer:3’-anchor
ratio, and devising strategies for systematic rather than arbitrary display
[74,75,76,77,9,78]. An interesting attempt to improve this method was the coappli-
cation of the subtraction approach, generating the differential subtraction display
[79] from which cDNA eluted from down-regulated gel band is amplified, biotiny-
lated, and used in excess as “driver cDNA”, and cDNA form an up-regulated band
is amplified and used as “tester cDNA” without biotinylation. The two amplicons
were allowed to hybridize, after which the hybrids were removed by streptavidin
and the residual cDNA cloned.

3.5 AFLP, SAGE/CAGE, GSTs, and DARFA

Multiple approaches to the display of genetic differences have been described in
addition to DD. All approaches are intended to provide complete and unbiased
fingerprints of specific transcriptomes or developmental stages. Highlighted
here are the more widely used techniques that have become the methods of
choice for various targets [80,81].

A novel DNA fingerprinting technique displaying the amplification fragment
length polymorphism (AFLP) of total digests of genomic DNAs [82] was based
on the restriction fragment length polymorphism technique (RFLP) [83], supple-
mented and enhanced with PCR with specific primers that provided the ability to
amplify only selected subsets of the genome. AFLP has proven indispensable for
microbial typing [84,85].

A display method that directly addresses the specific fingerprint of gene
expression at the sequence level is serial analysis of gene expression (SAGE)
[86]. It is founded on two principles: (1) a short sequence tag contains adequate
information to uniquely identify a transcript if it is isolated from a defined posi-
tion of this transcript, and (2) concatenation of such tags in a single clone will
provide instant, rich, and manageable sequence information about the particu-
lar transcriptome (Figure 5). The method has shown very good reproducibility
(R? =0.96) [81] and has found wide application [87,88,89]. A drawback of this
method, however, is the fact that frequently (in about 25-30% of the instances)
the generated tags are not long enough to be unambiguously assigned to a tran-
script. SAGE has also been modified to query the 5’-end of transcripts along
with the corresponding promoter elements to generate a technique named
CAGE [90] and to provide another method for identification and quantitative
analysis of genomic DNAs called genomic signature tags (GSTs) [91]. The principle
of SAGE has been combined with subtractive hybridization and immunopre-
cipitation in another recently developed technique called serial analysis of binding
elements (SABE), targeted to study gene regulation in humans [92].

One of the newest additions to the DD technologies, called differential analy-
sis of restriction fragments amplification (DARFA) [85], is amenable to both
complete transcriptome analysis and DNA fingerprinting. The technique is open,
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Figure 5. Serial analysis of gene expression (SAGE). 1. Total mRNA from the target material
(white and gray rectangle) is reverse transcribed with 5’-bio-oligo(dT) primer (TTTT black-fill cir-
cle); 2. cDNA is cleaved with a four-cutter restriction endonuclease-anchoring enzyme (AE), which
is expected to cut most transcripts more than once; 3. Fragments are bound to streptavidin beads
and divided in two aliquots; 4. Fragments are ligated to different adapters (diagonal stripe rectan-
gles — A, black rectangles — B) containing a site for an IIS endonuclease and then digested with this
1IS-tagging enzyme (TE); 5. Released tags are ligated to create ditags; 6. Ditags are PCR amplified
with primers A and B and the primers are removed by cleavage with the AE enzyme; 7. Fragments
are ligated into concatemers, cloned, and analyzed.

i.e. has no requirement for prior sequence information and claims to be able to dis-
play the entire transcriptome due to the characteristic of Hpy188III to generate 120
subpopulations based on the 2 nt 5-overhang sequence combinations (Figure 6).
This approach is intended to ensure that every one restriction fragment will acquire
adapter and thus PCR sites and a 4 bp combination identifier of the subpopula-
tion, but the method is no less cumbersome than other display approaches and
requires large amounts of starting material. The starting material may also be
subject to a preliminary PCR step to provide adequate amount for the downstream
procedures, which may diminish the accuracy of the method’s representation.

3.6 Representational Differences Analysis

Representation differences analysis (RDA) builds successfully on the subtractive
hybridization approach and was designed to find small differences between the
sequences of two DNA populations [2,93]. The approach employs a combination
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Figure 6. Differential analysis of restriction fragments amplification (DARFA). 1. Generation
representations from total DNA. Tester (white and gray rectangle) and driver (white rectangle)
DNA or cDNA are digested with Hpy188III restriction endonuclease (TCNNGA) to reduce the
complexity of the starting material and create a pool of 120 subpopulations differing by their two
nucleotide 5’-overhang sequences; 2. Fragments are ligated to hairpin adapters (black staggered
rectangles with loop); 3. Products are treated with exonucleases to remove the unligated fragments
and hairpin adapters and amplified by PCR with primers derived from the first 18-3’-nucleotides of
the adapters (black-filled directional rectangle); 4. Amplicons are separated on 5% denaturing
acrylamide gel and the difference bands isolated for further analysis.

of subtractive and kinetic enrichment of PCR amplicons. DNA “representa-
tions” are created by cleavage of DNA by a fairly infrequent restriction endonu-
clease, ligation to oligonucleotide adapters, and PCR amplification. This
generates a representative subset of the genome whose complexity is reduced by
10-50 times depending on the endonuclease of choice. The adapters of the tester
representation product are removed by cleavage and replaced by a different new
set of adapters. The tester then is allowed to hybridize to the driver (subtraction
step, where the tester/driver heterodimers will represent the identical sequences),
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and the ends are filled in. The resulting material is not subject to physical sepa-
ration but amplified with the second-adapter oligo alone (Figure 7). This repre-
sents the kinetic enrichment step where tester sequences gain amplification
advantage because they alone have two priming sites and thus will be amplified
exponentially. The approach has great merit and its best applications are the
generation of restriction fragment polymorphism probes and difference cloning.
Many variations to improve the method’s range have been suggested, including
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Figure 7. Representational differences analysis (RDA). Generation representations from total DNA: 1.
Tester DNA (white and gray rectangle) in two and driver DNA (white rectangle) are digested with
restriction endonuclease (Bam HI, Bgl II and Hind III) to reduce the complexity of the starting mate-
rial; 2. Fragments are ligated to Adapters (black rectangles); 3. Products are amplified for 20 cycles by
PCR with adapter primers thus creating representation of molecules smaller than 1 kb; 4. All PCR
adapters are removed by cleavage and the tester is ligated to a different set of dephosphorylated adapters
(upward diagonal fill rectangles). Subtraction and Kinetic Enrichment; 5. The tester representation is
mixed with excess driver and denatured; 6. Mixture is allowed to rehybridize and if the amount of driver
is adequate the only hybrid molecules with adapters on both strands will be the ones that are specific to
the tester (subtraction); 7. Hybrids are treated with Taq polymerase in the presence of all ANTPs to fill
in the 3™-ends; 8. PCR amplification with the second set adapter primers generates exponential amplifi-
cation only form templates with priming sites on both strands (kinetic enrichment). Products may be
additionally treated with mung bean nuclease to remove the single-stranded material and reamplified.
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a variety of restriction endonucleases and different adapters to make it usable
for the comparison of more that two genomes from environmental samples [94].
Rapid subtraction hybridization (RaSH) was introduced [95] to provide a
streamlined RDA-based cloning. RDA has been used successfully not only on
DNA but also on cDNA representations [96,97,98], and applications such as the
discovery of GBV-A and GBV-B [99,100], and TTV [32], cloning of apoptosis-
related genes [101], iron-regulated gene expression in bacteria [3,102], identifi-
cation of new tumor suppressor genes [103], changes of expression in malignant
formations [104] and identification of developmentally regulated genes [105].
RDA served as a base concept for a creative alternative PCR subtraction
technique termed ligation mediated enrichment (Limes) [106]. The later was
specifically designed to address the problem of genetic backgrounds that have
high repeats content and uses Taq DNA ligase to join only perfectly matched
ends, thus creating amplifiable templates only from perfect hybrids.

3.7 SPAD-RDA

Selectively primed adaptive driver (SPAD)-RDA is a fairly novel adaptation of
the subtractive hybridization and differs from RDA by an alternative approach
to the generation of the tester and the driver and by the optimization of the
driver material in the course of subtraction [4] (Figure 8).This improvement
potentially circumvents the recognized drawbacks of any PCR-based subtrac-
tion, that is if the complexity of the starting material is at too high or the target
at too low a concentration, the enrichment will be ineffective. In essence,
SPAD-RDA combines RDA [2] with the use of selective primers, as for AFLP
[82], and driver-control subtraction, as for SABRE [6]. The approach leads to
improved recovery of viral sequences on a greatly reduced background but does
not address the low-copy-number problem.

3.8 Enzymatic Degradation Subtractions (EDS, LCS, DSC, NSC,
UDGI/USA, and CODE)

Many adaptations of subtraction hybridization (SH) PCR approaches have been
proposed in attempt to circumvent one of SH’s most problematic areas — the back-
ground created by incomplete driver/tester hybridization. One large category of
adaptations consists of methods that employ one or multiple enzymatic degradation
steps to disable the unwanted templates.

The enzymatic degrading subtraction (EDS) [107] is one of the earliest
proposed alternatives for the construction of subtractive libraries from PCR-
amplified cDNA. With EDS, the tester DNA is blocked by thionucleotide incor-
poration that renders it resistant to exonucleases III treatment; the rate of
tester/driver hybridization is accelerated by phenol-emulsion reassociation
[108], and the driver cDNA and hybrid molecules are enzymaticaly removed by
digestion with exonucleases III and VII rather than by physical partitioning.
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Figure 8. Selectively primed adaptive driver-RDA (SPAD-RDA). 1. Tester DNA (white and gray
rectangle) and driver DNA (white rectangle) are digested with restriction endonuclease SaulllA to
reduce the complexity of the starting material; 2. Fragments are ligated to 5’-dephosphorylated
adapters (black rectangles) and after column purification the ends are filled in; 3. Products are
amplified by PCR with selective primers (SP) to create representations; 4. SP sequences are removed
by cleavage; 5. Tester (T) is ligated to a different set of dephosphorylated adapters (vertical fill rec-
tangles) and so is a portion of the driver to create a driver control (DC); 6. T and excess adapter-
free driver (D) are mixed, denatured, and reanneled (subtraction); the same is done in parallel with
a D/DC mix (driver control subtraction); 7. 3’-ends of hybrids are filled in; 8. PCR amplification
with the second set adapter primers generates exponential amplification only from templates with
priming sites on both strands (kinetic enrichment); 9. Product is treated with mung bean nuclease to
remove the single-stranded material and reamplified.

The utility of EDS has been demonstrated by constructing a subtractive library
enriched for cDNAs differentially expressed in adult rat brains [107].

Shortly after EDS, a new modification of SH was introduced [109], which could
potentially achieve the cloning of differentially expressed genes by linker capture
subtraction (LCS) where the tester and driver are digested, ligated to a linker, and
amplified. The linker is removed from the driver and after hybridization the prod-
ucts are subjected to mung bean nuclease action to remove ssDNA (Figure 9).
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Figure 9. Linker capture subtraction (LSC). Panel A. 1. Tester mRNA (white and gray rectangle)
and driver mRNA (white rectangle) are converted to double-stranded cDNA and digested with
restriction endonucleases Alul and Rsall; 2. Fragments are ligated to linkers that contain Alul/Sacl
restriction site (black staggered rectangles); 3. Products are amplified for 20 cycles by PCR with
adapter primers derived from the top strand of the linkers; 4. Linkers removed from the driver PCR
products by cleavage; 5. Tester product is mixed with excess driver and denatured. Mixture is
allowed to rehybridize and if the amount of driver is adequate the only hybrid molecules with
adapters on both strands will be the ones that are specific to the tester (subtraction); 6. Hybrids are
treated with mung bean nuclease to remove all ssDNA; 7. PCR amplification with the same linker
primers generates exponential amplification only form templates with priming sites on both strands.
Product may reenter the process at step 5 for additional rounds of enrichment.

The subtraction step can be repeated several times and, unlike RDA, where the
enrichment is mostly kinetic at the final PCR step, the target is selected by the
specifically preserved priming sites. This idea is appealing as it seems to simplify
the RDA approach. Like RDA, LCS takes advantage of the improved hybridiza-
tion kinetics of nucleic acid mixtures with reduced complexity with each round of
subtraction providing better levels of subtraction.

DSC is another approach that is very similar to LSC [5] and is also based on
the alternative “negative” amplification strategy. The main principle is that if
tester sequences have counterparts in the driver, these can be rendered unampli-
fiable to leave the desired unique sequences available for amplification. This
availability is achieved by digestion of separate driver and tester pools with a
restriction endonuclease followed by ligation of different adapters to provide
unique PCR priming sites. The adapter-tagged fragments are then amplified and
the adapter sequences are removed from the driver by digestion. The products
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are then left to hybridize and the resulting single-stranded ends are digested
away with mung bean nuclease from the tester molecules that have found a
homologue in the driver (Figure 10). The result is the conversion of the tester
sequences that have counterparts in the driver to new driver molecules with the
tester population depleted and the driver population enriched and available for
further rounds of subtraction with an exponentially increasing amount of seemingly
appropriate driver.
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Figure 10. Differential subtraction chain (DSC). Panel A: 1. Tester mRNA (white and gray rectangle)
and driver mRNA (white rectangle) are converted to double-stranded cDNA and digested with
restriction endonuclease Dpnl; 2. Fragments are ligated to two separate sets of primer/adapters
(black staggered rectangles and diagonal fill staggered rectangles) that contain BamHI restriction
site; 3. Products are amplified by PCR with adapter primers derived from the top strand of the
adapters; 4. linkers removed from the driver PCR products by cleavage; 5. Tester product is mixed
with excess driver and denatured. Mixture is allowed to hybridize and if the amount of driver is ade-
quate the only hybrid molecules with adapters on both strands will be the ones that are specific to
the tester (subtraction); 6. Hybrids are treated with mung bean nuclease to remove all ss DNA; this
also removes all single-stranded adapter sequences found in tested/driver heterohybrids homologous
molecules, thus creating additional driver fragments that can reenter the enrichment step (rehy-
bridization); 7. PCR amplification with the same linker primers generates exponential amplification
only form templates with priming sites on both strands. Product could re-enter the process at step 5
for additional rounds of enrichment.
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Potential drawbacks of this approach is the possibility that the sequence of
interest might contain insertions or deletions that will allow the formation of a
hybrid and from this point on such sequence can be lost for the enrichment
process. Another problem might be the “destructive” nature of the approach
itself, since rare products may not reanneal easily and thus if they remain in
single-stranded form, will be removed from further selection. The bias against
single-stranded species is a common shortfall to all subtraction approaches.
Still, the method is quite insightful and has been used successfully in cancer
studies for the identification of a several differentially expressed sequences
[110,111].

Cloning of deleted sequences (CODE) is yet another alternative of the classic
subtraction method, influenced by DSC and designed to address cloning of
deleted sequences, i.e. of sequences present in the tester but no longer in the
driver [112]. This procedure combines (1) the use of restriction endonucleases to
reduce the complexity of the sample; (2) utilization of dUTPs and Uracil deg-
lycosilase (UDG) to remove unwanted driver DNA after the hybridization step;
and (3) a biotinylated primer to rescue the fragments of interest.

A recent review on SH [113] that briefly highlights all major current subtrac-
tion strategies also gives a good account of how a combination of UDG and
single-strand-specific nuclease treatment can eliminate unwanted tester/driver
and driver/driver hybrids (Figure 11).

Another addition to the approaches aimed at reducing or eliminating sub-
traction background created by cross-hybridization is a technique called mispaired
DNA rejection (MDR) [114]. MDR also takes advantage of the abilities of
common mismatch repair enzymes (i.e. mung bean nuclease is able to attack
single-stranded loops in double-stranded structures and the Surveyor nuclease
recognizes and cleaves mispaired structures within DNA duplexes). The method
is elegantly designed to test the ability of the treatment to remove from the final
subtraction products such as repetitive clones and chimera clones. A very useful
application of MDR is also the recovery of highly conserved sequences between
different genomes.

The DSC method has evolved into negative subtraction chain NSC [115],
another SH-based approach that takes advantage of DSC idea and employs
improved adapters to remove the background after a round of classic SH.
Another recent modification of SH, coupled with template switching universal
long PCR [116] and single-strand deletion has been proposed as a quick method
to identify unknown viral agents [117].

3.9 Suppression Subtraction Hybridization

Subtractive hybridization methods have proven valuable for the identification of
significant genes from multiple systems representing the growth and differentia-
tion of cells [118,119,46,120]. Most of the methods are quite tedious and involve
complicated protocols that require great accuracy, attention to detail, and often
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Figure 11. Uracil-DNA subtraction assay (USA). 1. Tester cDNA (white and gray rectangle) is
ligated to 5’-adapters (black rectangles) and driver cDNA (vertical stripe rectangle) is synthesized
from mRNA (white rectangles) in the presence of Uracil; 2. Tester is mixed with excess of the driver,
the mixture melted, and allowed to reanneal; 3. Hybrids are treated with Klenow and then with
uracil-DNA glycosidase to generate nicks in all molecules containing driver fragments; 4. Hybrid
mixture is then treated by singe-strand-specific nuclease digestion that generates short unamplifiable
fragments from the driver homohybrids and the tester—driver heterohybrids; 5. Product is then
amplified by the tester adapter primers to generate tester-specific amplicons; 6. The first difference
product could be used in the same scheme for another round of subtraction, back in step 3 to
generate a second difference product.

substantial amounts of starting material to ensure that no rare molecular
species of importance will be omitted. One of SSH’s central features is the uti-
lization of PCR suppression [121]. PCR suppression is based on the premise
that if long inverted terminal repeats are attached to the ends of DNA frag-
ments, they will form stable panhandle structures at the end of each denatura-
tion and annealing cycle; in the presence of PCR primers that have the sequence
of these repeats, no amplification will occur. SSH has another feature of the
method is that it normalizes or equalizes the sequence abundance in the target
cDNA population by splitting the target tester material in two aliquots and
ligating them to different sets of adapters with inverted repeats. The normaliza-
tion occurs as the more abundant species readily reassociate with tester or
homologous driver sequences; the rare species remain single stranded. The two
testers are then hybridized to excess driver and then mixed together and extra
denatured driver added in a second hybridization step. This creates tester
heterohybrids from the difference material that are the only molecules available
for PCR (Figure 12). SSH is capable of enriching the target ~1000-fold after
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Figure 12. Suppression subtraction h ybridization (SSH). 1. Total RNA or PolyA + RNA from the
tester (white and gray rectangle) and the driver (white rectangle) are converted independently to
double-stranded cDNA by conventional or SMART RT-PCR; 2. All cDNAs are digested with
Rsal; 3. Tester is divided in two aliquots and each is ligated to different set of nonphosphorylated
adapters (L12 and R12) 4. First hybridization step. Both tester aliquots are subtracted independ-
ently with excess of the driver; 5. Second hybridization step. Products from the first step are mixed
and without further denaturation are supplemented with fresh denatured driver and the mixture is
allowed to rehybridize; 6. Ends of the hybrids are filled in the 3"-ends; 7. Product is amplified by two
rounds of PCR with nested primers L1/R1 followed by L2/R2.

only one round of subtraction [122,123,124,125,126]. SSH is an improvement on
the subtraction approaches [7] and has found a wide application [127,128,129,130].
SSH is a clean technique with truly good performance; however, SSH-generated
libraries contain some background clones that do not represent differentially
expressed transcripts. SSH is not ideally suited when dealing with transcripts that
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are only moderately (2-4-folds) enhanced, and generally requires a perfect driver
match for optimal performance. SSH could miss unique sequences that are pres-
ent at very low copy numbers and have remained single stranded and thus had
not acquired adapters. The problem posed by false positive clones has been tack-
led by the mirror orientation selection (MOS) approach [131], which deals with
redundant molecules that have evaded the hybridization subtraction step and
have remained in the process. The rationale behind MOS is that such molecules
have only one orientation relative to the adapters, while each genuine product
of the enrichment process has been generated by both orientations of the mol-
ecule; hence, if one of the adapters is removed enzymatically, the subtracted
product is allowed to denature and reanneal again, so the background mole-
cules will remain single stranded with only one priming site which can allow
only their linear amplification. SSH has served as a basis for ligation-mediated
suppression PCR [132,133,134] that has been used successfully for genome
walking into unknown sequence areas. SSH or the combination of SSH and
MOS have been used successfully for detection of differentially expressed genes
in many systems [135,136], including work identifying diversity in an environ-
mental genome [112], early mammalian embryonic development studies where
the starting material can be very scarce and some transcripts extremely rare
[25,33]; disease studies [26,137,138,139,140,29,23,141,142,143]; pharmacoge-
nomics [144]; infectious agents studies [84,122]; and virus—host interaction
studies [145,146,147,22,148].

3.10 Selective Amplification Via Biotin and Restriction-Mediated Enrichment

SABRE is an approach that uses the selective enrichment principle of RDA,
combines it with the use of biotin—streptavidin affinity and restriction enzyme
site reconstitution to achieve purification of the desired tester homohybrid pop-
ulation [6]. It was designed to take advantage of restriction-mediated reduction
of the complexity of the starting material and biotin- and restriction-mediated
recovery of tester homohybrids. The protocol demonstrates the ability to detect
moderately rare (representing ~0.03% of the total) mRNA species and 2—-10-fold
elevation in their expression levels (Figure 13). In addition to the tester/driver
subtraction, the driver cDNA is subtracted in a parallel control experiment with
another batch of the driver DNA amplified with tested adapters. The product
of this subtraction control reaction is then used for a second round of subtrac-
tion of the tester material to ensure that any differences that may arise form
PCR irregularities due to the adapter do not contribute to a background accu-
mulation of false positives. This thoughtful approach uses virtually identical
primers for the generation of the tester and the driver, thereby ensuring that
both representations will be comparable, allows for multiple subtraction rounds,
and, using two separate elements (both streptavidin capture and restriction],
ensures the selection of tester-derived molecules [149]. A possible drawback of
this method is bias against low-copy tester material that might remain single
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Figure 13. Selective amplification via biotin and restriction-mediated enrichment (SABRE). 1. Tester
(white and gray rectangle) and Driver (white rectangle) double-stranded cDNA are digested exhaus-
tively with restriction endonuclease Mbol; 2. Mbol-linker-adapters are ligated to both tester and
driver. Tester adapters are biotinylated and have a functional BamHI site; the driver adapters are not
biotinylated and lack the correct BamHI site. Tester and driver may be are amplified with virtually
identical PCR oligonucleotides designed to anneal; 3. Products are mixed, denatured, and
hybridized in the presence of 30-fold excess driver by phenol-salt emulsion, followed by digestion
with S1 nuclease to remove single-stranded moieties; 4. Resulting products are captured by strepta-
vidin-coated paramagnetic beads and the tester homohybrids are release specifically by BamHI
digestion; Steps 2-5 could be repeated to amplify the differences between the compared molecules.

stranded due to incomplete hybridization. Moreover, some species might be lost due
to preferential amplification in the PCR step that supplies the starting material.

3.11 DNA Enrichment by Allele-Specific Hybridization

DNA enrichment by allele-specific hybridization (DEASH) is an interesting and
important approach to subtraction application that detects small differences
that are not the result of differential gene or the presence of extraneous genetic
material is [150]. Such small differences might arise from low-frequency base
substitutions, haplotypes, SNPs, sequence variants, and recombinant molecules
that represent rare mutations or pathological recombination events. dSDNA
that contains different alleles is mixed with biotinylated allele-specific oligonu-
cleotide directed to a chosen variant and a nonbiotinylated competitor comple-
mentary to the other allele (Figure 14). The specificity of the hybridization
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Figure 14. DNA Enrichment by allele-specific hybridization (DEASH). 1. Target amplicon
(DNA, cDNA, or PCR representation in white and gray rectangle) that contains mixture of alleles
differing by a chosen base substitution (white circle and black circle) is mixed with biotinylated
allele-specific oligonucleotide (bio-ASO, white rectangle with black and grey circle) and the
corresponding competitor ASO (gray rectangle with white circle) and denatured; 2. Streptavidin-
coated magnetic beads (white crescent with gray bar) are added to the mix to retrieve the target
amplicons; 3. Magnetic beads are recovered form the mixture with a magnet; 4. The biotin-
captured amplicons/alleles are eluted from the beads; 5. Remaining nucleic acid mix can enter
another round of enrichment with bio-ASO.

might in so doing, be improved. The hybrids are captured on streptavidin-coated
paramagnetic beads and then thermally eluted in low salt buffer. The protocol
can be repeated for several rounds and has the potential to detect rare variants.
Its accuracy is unbiased by amplification since the separation occurs prior to
PCR. It is, however, not suitable for detection of unknown changes since it
requires preliminary information about the sequence of interest in order to
design the specific sequence enrichment probes.

3.12 Methods Combining the use of SSH and Microarrays

The microarray approach was introduced more than 10 years ago [151]. In
essence the microarray approach is a visualized subtractive hybridization
method with an added internal control that does not physically remove common
molecular species and can query any desired set of messages depending on the
experimental goal. This method became particularly powerful with the improve-
ment and standardization of array printing and of microhybridization methods,
and with the acquisition of complete genome sequences of many medically and
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industrially important organisms, including the human genome [152,41]. The
method still requires substantial investment, and even though it was quickly
commercialized, it has generated consistency and reproducibility issues.
Another important factor that restricted the use of such data acquisition
method relates to data analysis, because the ability to acquire data is exceeding
the computational power required to extract comprehensive information [153].
Fortunately, there have been rapid improvements in the data analysis fields
[139,154,155,156,157,158]. A combination of SSH and microarray approach
[24] is certainly a streamlined way to differential gene expression profiling that
can ensure that the data could be complete and manageable at the same time.
This has already been done in breast cancer studies [21], virus—host interaction
studies [22], and plant genetics [159]. The microarray approach to gene discov-
ery has been compared to SSH [160] and DD [161], and the assessment was that
these methods can be used as an alternative and/or complimentary transcript
profiling tool, especially when the targets are new genes and transcripts of low
abundance.

Finally, several methods have been developed to address the issue of quality
control of the subtractive process, and the integrity and quality of the starting
material. Regardless of the downstream protocol (SH, RDA, SSH, DEASH,
etc.,) an essential requirement for the success of any method designed to look at
differences is to provide an unbiased representation of the starting material. A
number of control approaches [162,163,2,164,165,116,1,166,167,168,134] have
been developed to ensure the quality of the starting material are found in refer-
ences, and they may be applied discriminately depending on the application and
the target of interest.

3.13 Conclusions

PEER is a new member of the subtraction hybridization-based methods designed
to query genetic differences. The major advantages of PEER are that it takes direct
advantage of the unique specificity of the target’s sequence by using it both as a
template and a primer. The blocking of common primers is an extra step that adds
hybridization and enzymatic specificity to the selection of oligonucleotides that
enter the final amplification process. PEER is versatile and not restricted to DNA
or RNA starting material and does not require excess of driver material since the
hybridization/exclusion step is done by PCR. The sensitivity and applicability of
the method to both RNA and DNA targets was recently demonstrated with a vari-
ety of viruses representing different genome structures — human herpesvirus and
Ectromelia virus (dsDNA), human echovirus, West Nile virus, and human respira-
tory syncytial virus (ssRNA), Orthoreovirus (polysegmented ds RNA), porcine
circovirus (circular ssDNA) [45].

Most existing subtraction methods suffer from the inability to completely
remove the background of common or highly repetitive sequences, are limited
in the recovery of rare molecular species, and may omit single-stranded molecules.
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Generally more advantageous are the hybridization methods that have their
sensitivity and specificity enhanced by enzymatic steps and that could be coupled
with good controls for the background. Standardized “chip” assays that combine
subtraction and microarray approaches will clearly dominate in the near future,
however, methods that are based on RDA, SSH, or DD have become “classical”
and are widely used, have good versatility and general reproducibility, have been
well standardizes and cannot be dismissed when screening for genetic differences
at any level of complexity.
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