Федеральное агентство научных организаций (ФАНО России) Федеральное государственное бюджетное учреждение науки ИНСТИТУТ БИООРГАНИЧЕСКОЙ ХИМИИ им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

(ИБХ РАН)

СОГЛАСОВАНО:

Ученый совет ИБХ РАН

УТВЕРЖДАЮ: Директор ИБХ РАН

Протокол № от « »

2021 г.

Ученый секретарь д.ф.-м.н. В.А.Олейников

академик А.Г.Габибов

от « » 2021 г.

от « » 2021 г.

РАБОЧАЯ ПРОГРАММА по дисциплине НИЗКОМОЛЕКУЛЯРНЫЕ БИОРЕГУЛЯТОРЫ

Направление подготовки:

1.5. Биологические науки

Направленность (профиль) программы:

1.5.6 Биотехнология

1.5.3 Молекулярная биология

Направление подготовки:

1.4. Химические науки

Направленность (профиль) программы:

1.4.9. Биоорганическая химия

Уровень высшего образования: подготовка научных и научно-педагогических кадров в аспирантуре

Квалификация выпускника: Исследователь. Преподаватель-исследователь.

Форма обучения: очная

Составитель курса: к.х.н Михайлов А.А., к.х.н Сольев П.Н.

Рабочая программа составлена на основании федеральных государственных образовательных стандартов высшего образования (ФГОС ВО), разработанных для реализации основных профессиональных образовательных программ высшего образования - программ подготовки научно-педагогических кадров в аспирантуре по направлению 1.5. Биологические науки, 1.4. Химические науки».

Согласно ФГОС по направлению подготовки 1.5. Биологические науки, 1.4. Химические науки (уровень подготовки кадров высшей квалификации) и учебному плану аспирантов, разработанного на основе этих требований, дисциплина «Низкомолекулярные биорегуляторы» является обязательной учебной дисциплиной обязательной части Блока 1 образовательной программы по направленности (профилю) 1.4.9. Биоорганическая химия и дисциплиной по выбору по направленности (профилю) 1.5.6. Биотехнология, 1.5.3. Молекулярная биология и на изучение которых отведена 2 зачетная единица. Объём курса составляет 36 академических часов (1 зачетная единица), из них 12 академических часов интерактивных лекций, 20 часов самостоятельной внеаудиторной работы аспирантов, включая подготовку к дифференцированному зачету и 4 часа на контроль знаний в форме зачет.

I. Цели и задачи изучения дисциплины.

- **1.1. Цель курса:** ознакомление с разнообразными низкомолекулярными органическими соединениями регуляторами жизнедеятельности человека, животных, растений, грибов, микроорганизмов и вирусов.
- 1.2. Задачи курса: показать значительное место низкомолекулярных соединений в процессах функциональной регуляции клеточной активности прокариотных и эукариотных организмов, отразить междисциплинарный характер открытия основных классов низкомолекулярных биорегуляторов, который происходил на стыке органической химии, химии природных соединений, биохимии и фармакологии и внес вклад в формирование биоорганической химии как самостоятельного естественнонаучного направления, продемонстрировать, что большинство жизненно необходимых лекарств это природные низкомолекулярные вещества, их синтетические и полусинтетические аналоги, а также новейшие соединения, для которых установлена физиологическая активность.
- **1.3.** Связь с другими дисциплинами: курс «Низкомолекулярные биорегуляторы» в той или иной степени имеет непосредственную связь практически со всеми дисциплинами, изучаемыми на протяжении всего времени овладения аспирантами образовательной программы по направлению подготовки 1.5. Биологические науки, 1.4. Химические науки.

II. Требования к уровню освоения дисциплины

В рамках данной дисциплины углубляются и развиваются следующие компетенции: Универсальные компетенции (УК):

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность планировать и решать задачи собственного профессионального и личностного развития (УК-5).

Общепрофессиональные компетенции (ОПК):

- способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);
- готовность к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-2).

Профессиональные компетенции (ПК):

- способность к самостоятельному проведению научно-исследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по направленности (профилю) «Биотехнология (в том числе бионанотехнологии)» (ПК-1);
- обладание представлениями о системе фундаментальных понятий и методологических аспектов биологии, форм и методов научного познания (ПК-2);
- способность приобретать новые знания с использованием современных научных методов и владение ими на уровне, необходимом для решения задач, возникающих при выполнении профессиональных функций (ПК-3);
- обладание опытом профессионального участия в научных дискуссиях, умение представлять полученные в исследованиях результаты в виде отчетов и научных публикаций (стендовые доклады, рефераты и статьи в периодической научной печати) (ПК-4);
- владение методами отбора материала, преподавания и основами управления процессом обучения фундаментальной биологии в школе и вузе (ПК-5).
- В результате освоения дисциплины «Низкомолекулярные биорегуляторы» обучающиеся должны:

Знать:

- основные классы низкомолекулярных биорегуляторов;
- вклад открытия низкомолекулярных биорегуляторов в становление биотехнологии как самостоятельного направления в естествознании;
- методы критического анализа и оценки современных научных достижений, а также методы генерирования новых идей при решении исследовательских и практических задач, в том числе, в междисциплинарных областях;
- современные способы использования информационно-коммуникационных технологий. Уметь:
- осуществлять выбор методов и средств решения задач исследования низкомолекулярных биорегуляторов;
- использовать основные законы естественнонаучных дисциплин в профессиональной деятельности; выбирать необходимые методы и оборудование для проведения исследований; работать с научно-технической информацией;
- выделять и систематизировать основные идеи в научных текстах; критически оценивать любую поступающую информацию, вне зависимости от источника;
- при решении исследовательских и практических задач генерировать новые идеи;
- выбирать и применять в профессиональной деятельности экспериментальные методы исследования.

Владеть:

- навыками выбора методов и средств решения задач исследования низкомолекулярных биорегуляторов;
- методами теоретического и экспериментального исследования низкомолекулярных биорегуляторов;
- навыками поиска (в том числе с использованием информационных систем и баз банных), обработки, анализа и систематизации информации;
- навыками критического анализа и оценки современных научных достижений.

III. Объем дисциплины и виды учебной работы

Форма обучения – ОЧНАЯ **Общий объем дисциплины:** 1 зачетная единица или 36 академических часов.

Всего	Аудиторные занятия (час), в том числе:			Самостоятельная	Контроль
часов				Работа (час)	(час)
36	лекции	практические занятия (семинары)	лабораторные работы		
	12	-	-	20	4
		12			

Распределение аудиторных часов по темам и видам учебной работы:

No	Наименование тем и разделов (час),	Аудиторные занятия (час)	
	(с развернутым содержанием курса	в том числе	
	в том числе: по каждой теме и разделу)	Лекции	Семинары
1	Низкомолекулярные биорегуляторы – введение.	2	
	Низкомолекулярные биорегуляторы липидной		
	природы, их биосинтез, физиологическая		
	регуляторная роль. Флавоноиды.		
2	Биосинтез вторичных метаболитов. Шесть	2	
	основных классов: алкалоиды, поликетиды,		
	нерибосомные пептиды, терпеноиды,		
	фенилпропаноиды, пурины и пиримидины,		
3	Терпеноиды. Важнейшие классы терпеноидов.	2	
	Экологическая функция, практическое значение и		
	медицинские применения.		
4	Антибиотики. Историческая справка. Основные	2	
	классы. Механизмы действия и возникновения		
	резистентности.		
5	Гормоны. Стероиды - половые гормоны и не	2	
	только.		
6	Регулирующая роль витаминов. Основные	2	
	группы. Витамины группы В как важнейшие		
	коферменты.		
	Всего:	12	-
	Итого:	12	

IV. Содержание курса

Раздел 1. Низкомолекулярные биорегуляторы липидной природы

Низкомолекулярные биорегуляторы липидной природы, их биосинтез, физиологическая регуляторная роль. Простагландины и тробоксаны. Лейкотриены. Жасмоновая кислота. Флавоноиды. Ацетилокоэнзим А — основа синтеза флавоноидов и терпенов. Пути биосинтеза

флавоноидов. Монолигнолы и лигнин. Конденсированные и гидролизуемые танины. Медикарпин и глицеоллин. Физиологическая и защитная роль флавоноидов растений.

Раздел 2. Вторичные метаболиты и их функция Основные химические реакции и пути биосинтеза

Алкалоиды. Группа алкалоидов опия. Понятие об опиатных рецепторах и их эндогенных лигандах. Рецепторы морфиновых алкалоидов и их природные лиганды: эндорфины, энкефалины и др. Синтетические анальгетики. Тропановые алкалоиды группы кокаина и атропина. М-Холиноблокаторы. Обезболивающие и снотворные лекарственные препараты. Наркотики и галлюциногены. Группа эфедрина. Адренергические синапсы и природные адреномиметики. Дофамин, адреналин, норадреналин, синтетические адреноблокаторы. Препараты для лечения ишемической болезни сердца. Хинные алкалоиды, строение и стереохимия. Проблема лечения малярии. Синтетические противомалярийные средства. Артемизинин и другие препараты группы гингхаосу. Алкалоиды группы резерпина. Природные и синтетические средства против аритмии. Алкалоиды пуринового ряда. Другие стимуляторы сердечной активности. Алкалоиды из безвременника осеннего - колхицин и колхамин - и их использование в селекции растений. Цитоскелетные алкалоиды. Группа колхицина. Группа таксола. Группа цитохалазина. Группа латрункулина. Винбластин и винкристин — перспективные противоопухолевые алкалоиды группы резерпина.

Раздел 3. Терпеноиды

Полиизопреноидная природа терпеноидов. Пути синтеза из мевалоновой кислоты и гликолитических интермедиатов. Полимеризация - основной путь биосинтеза терпеноидов. Растительные ароматические масла как источники терпеноидов. Циклизация. Инсектицидные терпеноиды. Фитол. Витамин А. Грибные терпеновые антибиотики. Каротин, лютеин, ликопин. Превращения ксантофиллов и фотоингибирование растений. Циклизация терпенов — основа биосинтеза стеролов.

Раздел 4. Основные классы. Механизмы действия и возникновения резистентности

Антибиотики. Пенициллины, история и значение их открытия. Цефалоспорины и родственные антибиотики. Представления о механизме биосинтеза бактериальной клеточной стенки и механизме действия пенициллинов. Молекулярные механизмы резистентности бактерий к пенициллинам и биоинженерные направления работ по ее преодолению. Тетрациклины - структура и механизм антимикробного действия. Основные этапы полного синтеза тетрациклина. Механизм биосинтеза тетрациклиновых антибиотиков и их влияние на биосинтез белка. Антибиотики как инструменты изучения биосинтеза белка в молекулярной биологии: основные этапы биосинтеза белка и связанные с ними антибиотики. Стрептомицин и другие аминогликозидные антибиотики. Пуромицин и механизм "пуромициновой реакции". Эритромицин и другие макролидные антибиотики. Хлорамфеникол и его аналоги. Полный синтез хлорамфеникола. Представление об антибиотиках, влияющих на биосинтез нуклеиновых кислот. Актиномицин D, антрациклины, оливо- и хромомицины и ансамакролиды. Их интеркаляция при ДНК зависимом биосинтезе РНК. Блеомицины, стрептонигрин и митомицины - цитотоксические реагенты, вызывающие разрывы и сшивки в

цепях ДНК. Нуклеозидные антибиотики и синтетические производные нуклеозидов - ингибиторы вируса герпеса и ВИЧ. Антибиотики - инструменты изучения ионного транспорта через мембраны. Полиеновые макролиды, основные черты строения и образование пор в липидных бислоях с участием стеринов. Другие противогрибковые антибиотики. Молекулярные механизмы действия антибиотиков как противоопухолевых агентов. Антбиотики как низкомолекулярные биорегуляторы. Проблемы и перспективы разработки новых антибиотиков.

Раздел 5. Гормоны. Стероиды - половые гормоны и не только.

Стероиды. Стероиды как тетрациклические тритерпены. Основные этапы их биосинтеза. Холестерин и растительные стерины: структура и биологическая функция. Сложные эфиры холестерина, липопротеины высокой и низкой плотности, влияние на развитие атеросклероза и отложение желчных камней. Полигидроксилированные стерины - зоо- и фитоэкдистероиды, гормоны линьки насекомых и их природные аналоги (экдизоны). Желчные кислоты. Биосинтез в печени и биологическая роль. Использование в биохимии и биоорганической химии. Прогестерон: биосинтез и биологическая роль при овариально-менструальном цикле. Синтетические аналоги и контрацептивы. Половые гормоны: эстрогены и андрогены. Биосинтез и биологическая роль. Особенности структуры и биологической активности эстрогенов (эстрон, эстрадиол и эстриол), связь с активностью фолиевой кислоты и Синтетические андрогенные препараты, прогестерона. анаболики. Гормоны надпочечников: минералокортикоиды. глюкокортикоиды Биосинтез И представителей и биологическое значение. Синтетические аналоги и ингибиторы. Сердечные гликозиды, стероидные сапонины и алкалоиды. Структура основных представителей и биологическое значение. Особенности рецепции стероидных гормонов.

Раздел 6. Витамины

Открытие витаминов и их роль в функционировании организмов человека и животных. Водорастворимые и жирорастворимые витамины. Витамины и коферменты.

Витамин группы В. Тиаминдифосфат и его роль в декарбоксилировании а-кетокислот и лечении болезни бери-бери. Витамин В2 (рибофлавин) и флавиновые коферменты, участие в системах оксидаз и дегидрогеназ. Витамин В5 (Пантотеновая кислота), кофермент А и его биосинтетическая роль. Витамин ВЗ (Ниацин) и ниацинамид, его коферменты (NAD и NADP) и их роль в составе оксидоредуктаз; биосинтез ниацина. Витамин В6 (адермин), его формы пиридоксин, пиридоксаль и пиридоксамин, и коферменты - пиридоксаль-5-фосфат и пиридоксамин-5'-фосфат; участие в процессах биосинтеза аминокислот и липидов. Витамин В9 (Фолиевая кислота), его коньюгаты с глутаминовой кислотой; тетрагидрофолиевая кислота. Их роль в переносе одноуглеродных радикалов. Применение при лечении анемий и лучевой болезни. Антагонисты фолиевой кислоты (аминоптерин и метотрексат), использование для лечения лейкозов и лейкемий. Компонент фолиевой кислоты - и-аминобензойная кислота как витамин для микроорганизмов. Открытие и применение сульфамидных препаратов в качестве первых химиотерапевтических средств при лечении инфекционных заболеваний. Витамин В12 (оксикобаламин) и его кофермент - кобаламид, их биологическая роль и применение при заболеваниях кроветворной системы. Близость систем коррина и порфина. Витамин С (аскорбиновая кислота): строение, реакционная способность, таутомерия и биологическая роль.

Методы промышленного получения. Витамины группы D и их провитамины. Механизм биосинтеза. Действующие гидроксилированные формы. Витамины группы A. Строение, биологическая роль и изомеризация в процессе функционирования. Каротиноиды как источники витамина A. Ретиновая кислота и ее биологическая роль. Витамины группы К.

V. Самостоятельная работа

В процессе освоения предмета предусмотрено самостоятельное изучение отдельных вопросов лекционного курса в виде проработки лекционного материала и соответствующих разделов курса по учебникам.

VI. Итоговая проверка знаний

Форма итоговой проверки и оценки знаний курса «Низкомолекулярные биорегуляторы» предусматривает контроль знаний в форме дифференцированного зачета с выставлением оценок в пятибалльной системе.

Вопросы для дифференцированного зачета:

- 1. Основные классы низкомолекулярных биорегуляторов.
- 2. Вклад открытия низкомолекулярных биорегуляторов в становление молекулярной биологии как самостоятельного направления в естествознании.
- 3. Новейшие методологии поиска и изучения низкомолекулярных биорегуляторов с применением масс-спектрометрии и метаболомики.
- 4. Основные группы алкалоидов.
- 5. Цитоскелетные алкалоиды.
- 6. Перспективные противоопухолевые алкалоиды.
- 7. Группа алкалоидов опия. Понятие об опиатных рецепторах и их эндогенных лигандах.
- 8. Морфин, кодеин, папаверин.
- 9. Героин, аналоги морфина (соединение Бентли), налорфин.
- 10. Рецепторы морфиновых алкалоидов и их природные лиганды.
- 11. Тропановые алкалоиды группы кокаина и атропина.
- 12. Алкалоиды группы резерпина.
- 13. Винбластин и винкристин перспективные противоопухолевые алкалоиды группы резерпина.
- 14. Алкалоиды пуринового ряда.
- 15. Цитоскелетные алкалоиды колхицин, таксол, цитохалазин, латрункулин.
- 16. Антибиотики: история открытия, основные группы.
- 17. Пенициллины. Представления о механизме биосинтеза бактериальной клеточной стенки и механизме лействия пенициллинов.
- 18. Молекулярные механизмы резистентности бактерий к пенициллинам и биоинженерные направления работ по ее преодолению.
- 19. Тетрациклины, стрептомицин, пуромицин.
- 20. Антибиотики, влияющие на биосинтез нуклеиновых кислот. Актиномицин D, антрациклины, оливо- и хромомицины и ансамакролиды.
- 21. Антибиотики как инструменты изучения биосинтеза белка в молекулярной биологии: основные этапы биосинтеза белка и связанные с ними антибиотики.
- 22. Проблемы и перспестивы разработки новых антибиотиков.
- 23. Антбиотики как низкомолекулярные биорегуляторы.
- 24. Молекулярные механизмы действия антибиотиков как противоопухолевых агентов.
- 25. Антибиотики инструменты изучения ионного транспорта через мембраны. Полиеновые макролиды, основные черты строения и образование пор в липидных бислоях с участием

стеринов.

- 26. Витамины и витаминоподбные вещества. Основные классы витаминов.
- 27. Открытие витаминов и их роль в функционировании организмов человека и животных.
- 28. Метаболизм витамина Д и обмен стеролов.
- 29. Витамин F и биосинтез простагландинов, тромбоксанов, лейкотриенов.
- 30. Открытие витаминов и их роль в функционировании организмов человека и животных. Водорастворимые и жирорастворимые витамины. Витамины и коферменты.
- 31. Витамин А. Строение, биологическая роль и изомеризация в процессе функционирования. Каротиноиды как источники витамина А. Ретиноевая кислота и ее биологическая роль.
- 32. Витамин В, тиаминмонофосфат и кокарбоксилаза; их роль в декарбоксилировании акетокислот и лечении болезни бери-бери.
- 33. Витамин В2 (рибофлавин) и флавиновые коферменты, участие в системах оксидаз и дегидрогеназ.
- 34. Витамин В5 (Пантотеновая кислота), кофермент Аи его биосинтетическая роль.
- 35. Витамин ВЗ (Ниацин) и ниацинамид. Кофермент оксидоредуктаз, биосинтез ниацина.
- 36. Витамин В6 (адермин), его формы пиридоксин, пиридоксаль и пиридоксамин, и коферменты пиридоксаль-5'-фосфат и пиридоксамин-5'-фосфат; участие в процессах биосинтеза аминокислот и липидов.
- 37. Витамин В9 (Фолиевая кислота), его коньюгаты с глутаминовой кислотой; тетрагидрофолиевая кислота. Их роль в переносе одноуглеродных радикалов.
- 38. Витамин В12 (оксикобаламин) и его кофермент кобамамид, их биологическая роль и применение при заболеваниях кроветворной системы.
- 39. Витамин С (аскорбиновая кислота): строение, реакционная способность, таутомерия и биологическая роль.
- 40. Витамины Dи их провитамины. Механизм биосинтеза.
- 41. Пути биосинтеза флафоноидов.
- 42. Ацетилокоэнзим Аи его роль в биосинтезе флавоноидов.
- 43. Физиологическая и защитная роль флавоноидов.
- 44. Монолигнолы и лигнин. Конденсированные и гидролизуемые таннины.
- 45. Полиизопреноидная природа терпенов.
- 46. Пути синтеза терпенов из мевалоновой кислоты и гликолитических интермедиатов.
- 47. Циклизация терпенов основа биосинтеза стеролов.
- 48. Пути синтеза терпенов из мевалоновой кислоты и гликолитических интермедиатов.
- 49. Стероиды как тетрациклические тритерпены. Основные этапы их биосинтеза.
- 50. Холестерин и растительные стерины: структура и биологическая функция.
- 51. Эстрогены и андрогены. Биосинтез и биологическая роль.
- 52. Желчные кислоты. Биосинтез в печени и биологическая роль. Использование в биоорганической химии.
- 53. Особенности структуры и биологической активности эстрогенов (эстрон, эстрадиол и эстриол), связь с активностью фолиевой кислоты и прогестерона. Синтетические андрогенные препараты, анаболики.
- 54. Сердечные гликозиды, стероидные сапонины и алкалоиды.
- 55. Особенности рецепции стероидных гормонов.
- 56. Стероидные гормоны насекомых и инсектициды.
- 57. Феромоны и половые аттрактанты насекомых.
- 58. Ювенильные гормоны насекомых и их роль в онтогенезе.
- 59. Низкомолекулярные биорегуляторы липидной природы.
- 60. Биосинтез, физиологическая регуляторная роль простагландинов, тромбоксанов и лейкотриенов.
- 61. Жасмоновая кислота сигнальная молекула растений.

- 62. Основные фитогормоны.
- 63. Рецепторы фитогормонов.
- 64. Пептидные фитогормоны новейший класс фитогормонов.
- 65. F-box белки и SCF-убиквитин-лиганзые комплексы.
- 66. Стриголактоны.
- 67. Яды и токсины как отдельные классы соединений.
- 68. Токсины земноводных и рыб.
- 69. Токсины высших растений и насекомых.
- 70. Использование токсинов в биохимии.

VII. Учебно-методическое обеспечение дисциплины

Рекомендуемая литература для освоения теоретического курса. Основная литература:

- 1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular biology of the cell, 5th ed. Garland Science, 2007.
- 2. J.M. Berg, J.L. Tymoczko, L. Stryer. Biochemistry, In ed. W. H. Freeman and Company, 2002. 10 B. Buchanan, W. Gruissem and R. Jones. Biochemistry and molecular biology of plants. Wiley, 2002.
- 3. L. Taiz, E. Zeiger. Plant physiology, 5th ed. Sinauer Associates, Inc., 2010.

Дополнительная литература:

- 1. Benjamins R., Scheres B. Auxin: the looping star in plant development // Annual Review of Plant Biology. V. 2008. 59. P. 443-465.
- 2. Calderon-Villalobos L.I., Tan X., Zheng N., Estelle M. Auxin perception--structural insights // Cold Spring Harb Perspect Biol. V. 2010. 2. P. a005546.
- 3. Depuydt S., Hardtke C.S. Hormone signalling crosstalk in plant growth regulation // Current Biology: CB. V. 2011. 21. P. R365-73.
- 4. Ejim L., Farha M.A., Falconer S.B., Wildenhain J., Coombes B.K., Tyers M., Brown E.D.et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy // Nature Chemical Biology. V. 2011. 7. P. 348-350.
- 5. Fajardo A., Martínez J.L. Antibiotics as signals that trigger specific bacterial responses // Current Opinion in Microbiology. V. 2008. 11. P. 161-167.
- 6. Falconer S.B., Brown E.D. New screens and targets in antibacterial drug discovery // Current Opinion in Microbiology. V. 2009. 12. P. 497-504.
- 7. Fischbach M.A., Walsh C.T. Antibiotics for emerging pathogens // Science. V. 2009. 325. P. 1089 1093.
- 8. Fukuyo Y., Hunt C.R., Horikoshi N. Geldanamycin and its anti-cancer activities // Cancer Letters. V. 2010. 290. P. 24-35.
- 9. Hardtke C.S., Dorcey E., Osmont K.S., Sibout R. Phytohormone collaboration: zooming in on Auxin brassinosteroid interactions // Trends in Cell Biology. V. 2007. 17. P. 485-492.
- 10. Javitt N.B. Oxysterols: novel biologic roles for the 21st century // Steroids. V. 2008. 73. P. 149-157.
- 11. Kamada-Nobusada T., Sakakibara H. Molecular basis for cytokinin biosynthesis // Phytochemistry. V. 2009. 70. P. 444-449.
- 12. Kim T., Guan S., Sun Y., Deng Z., Tang W., Shang J., Sun Y.et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors // Nature Cell Biology. V. 2009. 11. P. 1254-1260.
- 13. Kirby J., Keasling J.D. Biosynthesis of plant isoprenoids: perspectives for microbial engineering // Annual Review of Plant Biology. V. 2009. 60. P. 335-355.

- 14. Liscombe D.K., Facchini P.J. Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis // Current Opinion in Biotechnology. V. 2008. 19. P. 173-180.
- 15. Martens S., Mithöfer A. Flavones and flavone synthases // Phytochemistry. V. 2005. 66. P. 2399-2407.
- 16. Martinez J.L., Fajardo A., Garmendia L., Hernandez A., Linares J.F., Martínez-Solano L., Sánchez M.B. A global view of antibiotic resistance // FEMS Microbiology Reviews. V. 2009. 33. P. 44-65.
- 17. Martinez J.L., Sánchez M.B., Martínez-Solano L., Hernandez A., Garmendia L., Fajardo A., Alvarez-Ortega C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems // FEMS Microbiology Reviews. V. 2009. 33. P. 430-449.
- 18. Proust H., Hoffmann B., Xie X., Yoneyama K., Schaefer D.G., Yoneyama K., Nogué F.et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens // Development (Cambridge, England). V. 2011. 138. P. 1531-1539.
- 19. Rameau C. Strigolactones, a novel class of plant hormone controlling shoot branching // Comptes Rendus Biologies. V. 2010. 333. P. 344-349.
- 20. Simons K., Ikonen E. How cells handle cholesterol // Science. V. 2000. 290. P. 1721-1726.
- 21. Tanaka Y., Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways // Current Opinion in Biotechnology. V. 2008. 19. P. 190-197.
- 22. Tromas A., Paponov I., Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects // Trends in Plant Science. V. 2010. 15. P. 436-446.
- 23. Tromas A., Perrot-Rechenmann C. Recent progress in auxin biology // Comptes Rendus Biologies. V. 2010. 333. P. 297-306.
- 24. Tyurin V.A., Tyurina Y.Y., Kochanek P.M., Hamilton R., DeKosky S.T., Greenberger J.S., Bayir H.et al. Oxidative lipidomics of programmed cell death // Methods in Enzymology. V. 2008. 442. P. 375-393.
- 25. Wilke M.S., Lovering A.L., Strynadka N.C.J. Beta-lactam antibiotic resistance: a current structural perspective // Current Opinion in Microbiology. V. 2005. 8. P. 525-533.
- 26. Wollam J., Antebi A. Sterol Regulation of Metabolism, Homeostasis, and Development // Annual Review of Biochemistry. V. 2010.
- 27. Yim G., Wang H.H., Davies J. Antibiotics as signalling molecules // Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. V. 2007. 362. P. 1195-1200.
- 28. Yoneyama K., Xie X., Yoneyama K., Takeuchi Y. Strigolactones: structures and biological activities // Pest Management Science. V. 2009. 65. P. 467-470. 29. Ziegler J., Facchini P.J. Alkaloid biosynthesis: metabolism and trafficking // Annual Review of Plant Biology. V. 2008. 59. P. 735-769.