Пресс-центр / новости / Наука /

Ученые проследили за поведением наночастиц в организме

Наночастицы активно применяются в медицине для диагностики как контрастные агенты, а также для терапии различных заболеваний. Однако разработка многих новых многофункциональных наноагентов сдерживается трудностью мониторинга их судьбы в организме.

доставка лекарств, наночастицы

Григоров А.С.

Zelepukin IV, Yaremenko AV, Yuryev MV, Mirkasymov AB, Sokolov IL, Deyev SM, Nikitin PI, Nikitin MP

Коллаборация ученых из Института биоорганической химии РАН, МФТИ, Института общей физики им. А. М. Прохорова РАН, МИФИ и Университета «Сириус» разработала новый неинвазивный метод наблюдения за наночастицами в кровотоке, обладающий высоким временным разрешением. Метод позволил установить основные закономерности, которые влияют на жизнь частиц в кровотоке и представляются перспективными для разработки более эффективных наноагентов для биомедицинских применений. Результаты опубликованы в Journal of Controlled Release.

Клинические применения любых наночастиц требуют точного анализа их поведения в организме, особенно — времени нахождения наночастиц в кровотоке. Именно этот параметр определяет, успеют ли наночастицы распространиться по организму, достигнуть свою терапевтическую мишень (например, опухоль) и связаться с ней. Кроме того, излишне длинное время циркуляции может быть вредно, так как может привести к накоплению частиц в здоровых тканях и, соответственно, повысить их побочную токсичность.

Циркуляция наночастиц в кровотоке сегодня изучается главным образом с помощью различных методов забора образцов крови и анализа содержания в ней наноагентов. «Проблема таких методов в том, что часто частицы выводятся из кровотока очень быстро, иногда даже за несколько минут, и исследователь успевает взять только 2–3 образца крови, что недостаточно для полноценного анализа», — комментирует Максим Никитин, соавтор статьи, заведующий лабораторией нанобиотехнологий МФТИ  и старший научный сотрудник Лаборатории молекулярной иммунологии ИБХ РАН. Кроме того, сама процедура последовательного взятия крови приносит стресс организму и может опосредованно повлиять на циркуляцию наночастиц. Новые неинвазивные методы отслеживания судьбы наночастиц в организме крайне востребованы для развития наномедицины.

Авторы работы применили разработанный ими ранее индукционный метод детекции магнитных частиц (MPQ — англ. magnetic particle quantification) для неинвазивного измерения динамики частиц в крови. Для этого они помещали хвост животных, мышей или кроликов, в магнитную катушку прибора, затем вводили частицы в кровь и наблюдали за их концентрацией в хвостовых венах и артериях в реальном времени. Подобные измерения могут проводиться и на человеке, например, измерением магнитной катушкой частиц в руке или на кончиках пальцев.

Рисунок. 1. Схема проведения экспериментов. Хвост мыши помещался в катушку, частицы, циркулирующие по сосудам хвоста детектировались магнитной катушкой в реальном времени. Источник: Journal of Controlled Release

Исследования показали, что используемый метод дает возможность неинвазивно регистрировать уникальные по информативности кинетики частиц в кровотоке, причем гораздо проще, чем классические подходы. Это позволило подробно изучить, что может повлиять на поведение частиц в кровотоке животных. Исследователи изучили три группы факторов: свойства частиц, особенности их введения, а также состояние организма животного. Дольше пребывали в кровотоке маленькие отрицательно-заряженные наночастицы, вводимые в высоких дозах. Кроме того, было обнаружено, что если вводить в кровь частицы несколько раз подряд, то циркуляция последующих доз частиц значительно продлевается.

«Подобные ситуации могут встречаться в клинической практике, когда человеку сначала вводятся наноагенты, увеличивающие МРТ-контраст (магнитные частицы), а потом — терапевтические наночастицы, например, липосомы с лекарством. Мы показали, что частицы могут влиять друг на друга, и это может быть важно при терапии», — комментирует Иван Зелепукин, первый автор статьи и младший научный сотрудник Лаборатории молекулярной иммунологии ИБХ РАН и МФТИ.

Крайне важным аспектом оказалось состояние организма, в который вводятся частицы. Так, циркуляция у мышей разных генетических линий могла отличаться в несколько раз, причем различие наблюдалось только для маленьких 50-нм частиц, а не для более крупных наноагентов. Кроме того, если животное имело развитую опухоль, наночастицы начинали быстрее выводиться из крови, причем тем скорее, чем больше объем раковой опухоли. Эти факты в работе связываются с динамическими изменениями иммунной системы и ее большей способностью к распознаванию инородных веществ при развитии патологии. Обычно подобная информация о состоянии организма игнорировалась ранее в экспериментах, поэтому своими результатами авторы привлекают внимание к необходимости открыть этот ящик Пандоры для оптимального дизайна нанолекарств.

«Настолько подробное и разностороннее исследование поведения частиц даже с весьма коротким временем пребывания в кровотоке животного было проведено впервые. Оно было бы невозможно без той методологии, которая разрабатывается в Институте общей физики РАН. Наш метод сочетает в себе высокие чувствительность, временное разрешение и точность. Кроме того, он не требует инвазивных процедур и позволяет регистрировать содержание и динамику наночастиц практически в реальном времени. Это позволило получить большой объем важной информации и выявить новые закономерности, например, о разной динамике частиц у животных с разным иммунным статусом, наличием опухолей и т. д. Кроме того, развитая методика позволила задействовать на порядки меньшее количество животных в исследовании, что крайне важно как по временным и финансовым соображениям, так и для реализации прогрессивного этического принципа работы с животными 3R: Replacement, Reduction and Refinement (замена, сокращение и повышение качества). Мы полагаем, что более глубокое понимание основополагающих механизмов может значительно облегчить рациональное проектирование наноматериалов с расширенной функциональностью и оптимальной фармакокинетикой для диагностики и терапии будущего», — резюмирует Пётр Никитин, соавтор исследования, заведующий лабораторией биофотоники ИОФ РАН.

Работа была выполнена при поддержке Российского научного фонда и Российского фонда фундаментальных исследований.

3 августа 2020 года