Федеральное агентство научных организаций (ФАНО России) Федеральное государственное бюджетное учреждение науки ИНСТИТУТ БИООРГАНИЧЕСКОЙ ХИМИИ им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)

СОГЛАСОВАНО:

УТВЕРЖДАЮ: Директор ИБХ РАН

Ученый совет ИБХ РАН Протокол № от « » 2021 г.

Ученый секретарь

академик А.Г.Габибов

от « » 2021 г.

д.ф.-м.н. В.А.Олейников

от « » 2021 г.

РАБОЧАЯ ПРОГРАММА по дисциплине СТРУКТУРНАЯ БИОЛОГИЯ

Направление подготовки:

1.5. Биологические науки

Направленность (профиль) программы:

1.5.4. Биохимия

1.5.3. Молекулярная биология

Направление подготовки:

1.4 Химические науки

Направленность (профиль) программы:

1.4.9. Биоорганическая химия

Уровень высшего образования: подготовка научных и научных и научно-педагогических кадров в аспирантуре

Квалификация выпускника: Исследователь. Преподаватель-исследователь.

Форма обучения: очная

Москва – 2021

Составители курса: д.б.н. Люкманова Е.М., д.ф-м.н Олейников В.А., д.ф-м.н Шенкарев З.О. к.б.н. Горячева Е.А., к.х.н Зиганшин Р.Х., к.ф-м.н Дубинный М.А., к.ф-м.н Чугунов А.О., к.ф-м.н Минеев К.С., к.ф-м.н Надеждин К.Д., к.ф-м.н Шаронов Г.В.

Рабочая программа составлена на основании федеральных государственных образовательных стандартов высшего образования (ФГОС ВО), разработанного для реализации основных профессиональных образовательных программ высшего образования — программ подготовки научно-педагогических кадров в аспирантуре по направлению подготовки кадров высшей квалификации 1.5. Биологические науки, 1.4. Химические науки.

Согласно ФГОС ВО по направлению подготовки 1.5. Биологические науки, 1.4. Химические науки (уровень подготовки кадров высшей квалификации) и учебному плану аспирантов, разработанного на основе этих требований, дисциплина «Структурная биология» является дисциплиной обязательной части Блока 1 образовательной программы по направленности (профилю) 1.5.4. Биохимия, 1.5.3. Молекулярная биология и 1.4.9. Биоорганическая химия на изучение которых отведена 2 зачетная единица. Соответствующий этому объёму курс составляет 72 академических часа, из них 42 академических часов лекций, 26 часов самостоятельной внеаудиторной работы аспирантов, включая подготовку к дифференцированному зачету и 4 часа на контроль знаний в форме зачет.

I. Цели и задачи изучения дисциплины

- **1.1. Цель курса:** получение базовых знаний о структурных исследованиях сложных биомолекул и наночастиц.
- **1.2. Задачи курса:** создание у студентов целостного представления об основных принципах и технологиях современной структурной биологии, о существующих методах получения информации о взаимосвязи структуры, динамики и функции биомакромолекул;
- **1.3.** Связь с другими дисциплинами: курс «Структурная биология» в той или иной степени имеет непосредственную связь практически со всеми дисциплинами, изучаемыми на протяжении всего времени овладения аспирантами образовательной программы по направлению подготовки 1.5. Биологические науки, 1.4. Химические науки.

II. Требования к уровню освоения дисциплины

В рамках данной дисциплины углубляются и развиваются следующие компетенции: Универсальные компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность планировать и решать задачи собственного профессионального и личностного развития (УК-5).

Общепрофессиональные компетенции:

- способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);
- готовность к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-2).

Профессиональные компетенции:

- способность к самостоятельному проведению научно-исследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по направленности (профилю) «Молекулярная биология» (ПК-1);
- обладание представлениями о системе фундаментальных понятий и методологических аспектов биологии, форм и методов научного познания (ПК-2);
- способность приобретать новые знания с использованием современных научных методов и владение ими на уровне, необходимом для решения задач, возникающих при выполнении профессиональных функций (ПК-3);
- обладание опытом профессионального участия в научных дискуссиях, умение представлять полученные в исследованиях результаты в виде отчетов и научных публикаций (стендовые доклады, рефераты и статьи в периодической научной печати) (ПК-4);
- владение методами отбора материала, преподавания и основами управления процессом обучения фундаментальной биологии в школе и вузе (ПК-5).

В результате освоения дисциплины «Физико-химические методы исследования биополимеров» обучающиеся должны:

Знать:

- центральную догму структурной биологии;
- физико-химические методы изучения взаимодействия биополимеров;
- принцип исследования структуры биополимеров физико-химическими методами;
- использования компьютерных методов в биологии;
- основы метода молекулярной динамики и докинга;
- принцип метода моделирования пространственной структуры белка на основании гомологии; методы критического анализа и оценки современных научных достижений, а также методы генерирования новых идей при решении исследовательских и практических задач, в том числе, в междисциплинарных областях;
- современные способы использования информационно-коммуникационных технологий.

Уметь:

- использовать физико-химические методы изучения взаимодействия биополимеров;
- исследовать структуру биополимеров физико-химическими методами;
- использовать компьютерные методы в биологии;
- использовать принцип метода моделирования пространственной структуры белка на основании гомологии:
- использовать основные законы естественнонаучных дисциплин в профессиональной деятельности;
- выбирать необходимые методы и оборудование для проведения исследований;
- работать с научно-технической информацией;
- выделять и систематизировать основные идеи в научных текстах;
- критически оценивать любую поступающую информацию, вне зависимости от источника;
- при решении исследовательских и практических задач генерировать новые идеи;
- выбирать и применять в профессиональной деятельности экспериментальные методы исследования.

Владеть:

- навыками выбора методов и средств решения задач физико-химических методов исследования биополимеров;
- методами теоретического и экспериментального исследования физико-химических методов исследования биополимеров;
- компьютерными методами в биологии;

- навыками поиска (в том числе с использованием информационных систем и баз банных), обработки, анализа и систематизации информации; навыками критического анализа и оценки современных научных достижений.

III. Объем дисциплины и виды учебной работы

Форма обучения – ОЧНАЯ Общий объем дисциплины: 2 зачетная единица или 72 академических часа.

Всего часов	Аудиторные занятия (час), в том числе:			Самостоятельная Работа (час)	Контроль (час)
72	лекции	практические занятия (семинары)	лабораторные работы		
	42	-	-	26	4
		42			

Распределение трудоемкости по разделам и темам:

№	Наименование тем и разделов (час),	Аудиторные занятия (час)	
	(с развернутым содержанием курса	в том числе	
	в том числе: по каждой теме и разделу)	Лекции	Семинары
1	Роль структурной биологии в современных	2	-
	науках о живом		
2	Оптическая спектроскопия для структурной	2	-
	биологии		
3	Флуоресцентная и конфокальная микроскопия	2	-
4	Масс-спектрометрия для решения задач	4	-
	структурной биологии		
5	Мембраномоделирующие среды в структурной	2	-
	биологии		
6	Структура низкомолекулярных соединений	2	-
7	ЯМР-спектроскопия биомолекул	2	-
8	ЭПР-спектроскопия	2	-
9	Рентгеновская кристаллография и малоугловое	2	
	рентгеновское рассеяние		
10	Электронная просвечивающая микроскопия	4	
11	Методы молекулярного моделирования	4	
12	Атомно-силовая микроскопия для структурной	2	
	биологии		
13	Спектроскопия комбинационного рассеяния в	2	
	биологии и медицине		
14	Флуоресцентные наночастицы в биологических и	2	
	медицинских приложениях		
15	Белковая инженерия для решения задач	8	
	структурной биологии		
	Всего:	42	-
	Итого: 42		

IV. Содержание курса

Раздел 1. Роль структурной биологии в современных науках о живом

Что такое структурная биология? История и будущее структурной биологии. Объекты, задачи и методы структурной биологии.

Раздел 2-3. Оптическая спектроскопия для структурной биологии Флуоресцентная и конфокальная микроскопия

Молекулярная спектроскопия электронного поглощения света. Закон Бугера-Ламберта-Бера. Измерение концентрации молекул в растворе. Коррекция светорассеяния в спектрах поглощения. Локализационная микроскопия (PALM, STORM). STED-микроскопия. Молекулярная флуоресцентная спектроскопия. Спектры возбуждения и испускания молекул. Флуоресцентная спектроскопия с временным разрешением. Фёрстеровский резонансный перенос энергии. Структурные исследования с применением Фёрстеровского резонансного переноса энергии. Методы флуоресцентной микроскопии в исследованиях структуры и взаимодействий молекул. Флуоресцентная микроспектроскопия одиночных молекул. Устройство микроспектрометров для измерения флуоресценции одиночных молекул. Структурные исследования с применением флуоресцентной спектроскопии одиночных молекул. Анализ вторичной структуры белков. Анализ структуры ДНК. Конфокальная микроскопия и спектроскопия кругового дихроизма (КД).

Раздел 4. Масс-спектрометрия для решения задач структурной биологии

Принцип масс-спектрометрического и хромато-масс-спектрометрического анализа. Идентификация и структурный анализ низкомолекулярных соединений. Идентификация и структурный анализ пептидов и белков. Применение хромато-масс-спектрометрии для качественного и количественного омиксного анализа сложных смесей.

Раздел 5. Мембраномоделирующие среды в структурной биологии

Клеточная мембрана. Строение и состав. Искусственные мембраномоделирующие среды. Применение для структурной биологии.

Раздел 6. Структура низкомолекулярных соединений

Методы получения информации о химической структуре низкомолекулярных соединений: ЯМР-спектроскопия, масс-спектрометрия, ИК-спектроскопия, рентгеновская кристаллография. Масс спектрометрия низкомолекулярных соединений: методы ионизации, молекулярный ион, правила фрагментации, повторная фрагментация, дерево фрагментации, моноизотопная масса. Определение брутто формулы соединения и его фрагментов по точной моноизотопной массе. Учет валентностей в брутто формуле через число колец и двойных связей в молекуле. Одномерная ¹Н и ¹³С ЯМР спектроскопия низкомолекулярных соединений: интеграл, мультиплетность, химический сдвиг. Связь со структурой формулой. Двумерная ЯМР спектроскопия низкомолекулярных соединений: спектры СОЅҮ, ТОСЅҮ, НЅОС, НМВС.

Спиновые системы, структуры фрагментов. Определение структурной формулы по данным ЯМР-спектроскопии и масс-спектрометрии.

Раздел 7. ЯМР-спектроскопия биомолекул

Основные принципы ЯМР-спектроскопии, история развития метода. Место ЯМР-спектроскопии среди других методов структурной биологии. Фурье ЯМР-спектроскопия и устройство современных ЯМР-спектрометров. Многомерная спектроскопия ЯМР. Параметры ЯМР, несущие структурную информацию. Определение вторичной и пространственной структуры белка по данным ЯМР. Продольная и поперечная релаксация. Исследование внутримолекулярной динамики белковых молекул по данным ЯМР. Изотопные метки и диапазон применимости различных методов ЯМР.

Раздел 8. ЭПР-спектроскопия

История создания метода. Устройство ЭПР-спектрометра, введение спиновых меток в биомолекулы. Задачи структурной биологии, решаемые с помощью ЭПР-спектроскопии.

Раздел 9. Рентгеновская кристаллография и малоугловое рентгеновское рассеяние

История создания и основные физические принципы метода рентгеноструктурного анализа. Интерференция и дифракция. Место рентгеноструктурного анализа среди других методов структурной биологии. Задачи, решаемые с помощью рентгеноструктурного анализа биомакромолекул. Результат рентгеноструктурного эксперимента, данных пространственных структур, преимущества и ограничения метода. Кристаллизация белков и их комплексов. Основные понятия и термины: симметрия, кристаллическая решетка, элементарная ячейка, независимая часть, пространственное разрешение. Построение рентгеноструктурного эксперимента. Фазовая проблема и пути ее решения. Расшифровка и уточнение структуры, основные параметры качества структурной модели. Времяразрешенная кристаллография на синхротронах и лазерах на свободных электронах (XFEL). Нейтронная и электронная кристаллография. Малоугловое рассеяние рентгена в растворе биомакромолекул. Схема эксперимента и его отличие от кристаллографии. Преимущества и недостатки метода. Анализ кривых малоуглового рассеяния. Участок Гинье и графики Кратки как источник информации о свойствах образца. Программное обеспечение, моделирование структуры и конформационной подвижности на основе данных рассеяния.

Раздел 10. Электронная просвечивающая микроскопия.

История метода. Устройство электронного микроскопа, принципы формирования изображения. Возможности и применение электронной микроскопии макромолекул в структурной биологии.

Раздел 11. Методы молекулярного моделирования

Понятие эксперимента *in silico*. Методы молекулярного моделирования как необходимый компонент интерпретации экспериментальных данных в структурной биологии. Метод

эмпирических силовых полей. Молекулярная динамика. Метод Монте-Карло. Моделирование на основании гомологии. Молекулярный докинг и виртуальный скрининг химических баз данных. Понятие о драг-дизайне. Структурные базы данных. Поиск в базах данных, алгоритмы выравнивания по последовательности и по структуре. Структурные выравнивания. Белковый дизайн и перспективы его будущих применений.

Раздел 12. Атомно-силовая микроскопия

Основные физические принципы работы атомно-силового микроскопа. Исследование молекулярных объектов методом ACM. Новые тенденции в развитии атомно-силовой микроскопии. Примеры работ, демонстрирующих использование ACM для структурных исследований биомолекул.

Раздел 13. Спектроскопия комбинационного рассеяния в биологии и медицине

Основы колебательной спектроскопии. Особенности применения ИК и КР в изучении биологических объектов. Принципы интерпретации колебательных спектров. Применение КР спектроскопии в исследованиях структуры и особенностей взаимодействия биологических молекул. Возможности КР спектроскопии в исследованиях на уровне клеток и тканей, в том числе в живых организмах. Принципы усиления эффекта КР, гигантское комбинационное рассеяния (ГКР). Формирование КР усиливающих структур, применение эффекта в изучении живых объектов (на примере исследования мозга). КР микроскопия. Новые тенденции использования КР в микроскопии ближнего поля и зондово усиленной спектроскопии (Тір Enhanced Raman Spectroscopy, TERS). Принципы получения 3D изображений методами микроскопии ближнего поля. Перспективы использования новых методов для изучения структуры биологических объектов.

Раздел 14. Флуоресцентные наночастицы в биологических и медицинских приложениях

Флуоресцентные наночастицы: классы наночастиц и их свойства. Синтез, параметры, модификация поверхности и функционализация наночастиц: квантовые точки, углеродные и кремниевые наночастицы, полимерные наночастицы, ап-конвертерные нанофосфоры. Особенности использования наночастиц в одно- и двух-фотонной микроскопии биологических объектов. Ферстеровский резонансный перенос энергии, сенсоры на основе флуоресцентных наночастиц. Фотодинамическая терапия. Использование флуоресцентных наночастиц для визуализации новообразований. Нано- и микрочастицы для адресной доставки в тераностике.

Раздел 15. **Белковая инженерия для решения задач структурной биологии**

Подходы в белковой инженерии для решения задач структурной биологии. Глобулярные и мембранные белки, различные системы рекомбинантной продукции. Требования, предъявляемые к системам рекомбинантной продукции. Факторы, влияющие на уровень экспрессии рекомбинантных белков. Экспрессия в Е. coli, клетках насекомых и эукариотических клетках. Различные подходы, штаммы и особенности. Бесклеточная продукция белков. Устройство бесклеточной белоксинтезирующей системы. Возможности и преимущества перед клеточными

системами. Особенности применения для продукции мембранных белков. Понятие ренатурации белков. Особенности ренатурации глобулярных и мембранных белков. Основные подходы для ренатурации. Способы получения белковых молекул, содержащих генетически кодируемые и ковалентные метки, включая спектроскопические, флуоресцентные, парамагнитные и изотопные метки, а также таги для очистки и специфической детекции биомолекул. Формирование представления о использовании различных стратегий введения меток для решения задач молекулярной и структурной биологии и биотехнологии.

V. Самостоятельная работа

В процессе освоения предмета предусмотрено самостоятельное изучение отдельных вопросов лекционного курса в виде проработки лекционного материала и соответствующих разделов курса по учебникам.

VI. Итоговая проверка знаний

Предусматривается контроль знаний в форме дифференцированного зачета с выставлением оценок в пятибалльной системе.

Вопросы для дифференцированного зачета:

- 1. Объекты, задачи и методы структурной биологии.
- 2. Молекулярная спектроскопия электронного поглощения света. Закон Бугера-Ламберта-Бера. Измерение концентрации молекул в растворе. Коррекция светорассеяния в спектрах поглошения.
- 3. Локализационная микроскопия (PALM, STORM). STED-микроскопия.
- 4. Молекулярная флуоресцентная спектроскопия
- 5. Конфокальная микроскопия.
- 6. Спектроскопия кругового дихроизма (КД).
- 7. Принцип масс-спектрометрического и хромато-масс-спектрометрического анализа. Идентификация и структурный анализ низкомолекулярных соединений. Идентификация и структурный анализ пептидов и белков.
- 8. Принцип масс-спектрометрического и хромато-масс-спектрометрического анализа. Применение хромато-масс-спектрометрии для качественного и количественного омиксного анализа сложных смесей.
- 9. Искусственные мембраномоделирующие среды. Применение для структурной биологии.
- 10. Методы получения информации о химической структуре низкомолекулярных соединений: ЯМР-спектроскопия, масс-спектрометрия, ИК-спектроскопия, рентгеновская кристаллография.
- 11. Основные принципы ЯМР-спектроскопии, история развития метода. Место ЯМР-спектроскопии среди других методов структурной биологии.
- 12. ЯМР спектроскопия низкомолекулярных соединений: интеграл, мультиплетность, химический сдвиг. Связь со структурой формулой. Двумерная ЯМР спектроскопия низкомолекулярных соединений: спектры COSY, TOCSY, HSQC, HMBC. Спиновые системы, структуры фрагментов. Определение структурной формулы по данным ЯМР-спектроскопии и масс-спектрометрии.
- 13. Фурье ЯМР-спектроскопия и устройство современных ЯМР-спектрометров. Многомерная спектроскопия ЯМР.
- 14. Масс спектрометрия низкомолекулярных соединений: методы ионизации, молекулярный ион, правила фрагментации, повторная фрагментация, дерево фрагментации, моноизотопная масса.

- 15. Устройство ЭПР-спектрометра, введение спиновых меток в биомолекулы. Задачи структурной биологии, решаемые с помощью ЭПР-спектроскопии.
- 16. Устройство ЭПР-спектрометра, введение спиновых меток в биомолекулы. Задачи структурной биологии, решаемые с помощью ЭПР-спектроскопии.
- 17. Рентгеновская кристаллография и малоугловое рентгеновское рассеяние.
- 18. Устройство электронного микроскопа, принципы формирования изображения. Возможности и применение электронной микроскопии макромолекул в структурной биологии.
- 19. Методы молекулярного моделирования как необходимый компонент интерпретации экспериментальных данных в структурной биологии.
- 20. Моделирование на основании гомологии. Молекулярный докинг и виртуальный скрининг химических баз данных.
- 21. Основные физические принципы работы атомно-силового микроскопа. Исследование молекулярных объектов методом АСМ.
- 22. Спектроскопия комбинационного рассеяния в биологии и медицине.
- 23. Применение спектроскопии комбинационного рассеяния в исследованиях структуры и особенностей взаимодействия биологических молекул.
- 24. Принципы получения 3D изображений методами микроскопии ближнего поля. Перспективы использования новых методов для изучения структуры биологических объектов.
- 25. Флуоресцентные наночастицы: классы наночастиц и их свойства. Синтез, параметры, модификация поверхности и функционализация наночастиц.
- 26. Использование флуоресцентных наночастиц для визуализации новообразований. Нано- и микрочастицы для адресной доставки в тераностике.
- 27. Подходы в белковой инженерии для решения задач структурной биологии. Глобулярные и мембранные белки, различные системы рекомбинантной продукции.
- 28. Понятие ренатурации белков. Особенности ренатурации глобулярных и мембранных белков. Основные подходы для ренатурации.
- 29. Способы получения белковых молекул, содержащих генетически кодируемые и ковалентные метки, включая спектроскопические, флуоресцентные, парамагнитные и изотопные метки, а также таги для очистки и специфической детекции биомолекул.
- 30. Формирование представления о использовании различных стратегий введения меток для решения задач молекулярной и структурной биологии и биотехнологии.

VII. Учебно-методическое обеспечение дисциплины

Рекомендуемая литература для освоения теоретического курса.

Основная литература:

- 1. Девид Нельсон, Майкл Кокс. Основы биохимии Ленинджера. В 3 томах. М:, Лаборатория знаний, 2020.
- 2. Лебедев А. Т. Масс-спектрометрия в органической химии. Москва. 2003.
- 3. Mass spectrometry basics. Eds. C.G. Herbert, R.A.W. Johnstone. 2003. CRC Press.
- 4. New and emerging proteomic techniques. Eds. D. Nedelkov, R.W. Nelson, Methods in molecular biology, 328. 2006, Humana Press.
- 5. "Proteomics of human body fluids: principles, methods, and applications" Ed: Visith Thongboonkerd. 2007, Humana Press.
- 6. LC-MS/MS in Proteomics. Eds. P.R. Citillas and J.F. Timms, Methods in molecular biology, 2010, Humana Press SS.
- 7. В. Шмидт. Оптическая спектроскопия для химиков и биологов. М., Техносфера, 2007.

- 8. G. Sluder, D.E. Wolf. Digital Microscopy. 3rd ed./4th ed., Methods in Cell Biol. V.81/1.114. 2007/2013
- 9. P.M. Conn. Imaging and Spectroscopic Analysis of Living Cells: Optical and Spectroscopic Techniques. Methods in Enzymology, V.504, 2012.
- 10. Основы сканирующей зондовой микроскопии. Институт физики микроструктур РАН, Нижний Новгород, 2004.
- 11. A.Engel, D.J.Muller. Observing Single Biomolecules at Work with the Atomic Force Microscope. Nat. Struct. Biol. 2000. Vol. 1, N 9. P. 715–718.
- 12. Федотов М. А. Ядерный магнитный резонанс в неорганической и координационной химии. Растворы и жидкости. М.: Физматлит, 2010.
- 13. И.Э.Нифантьев, П.В.Ивченко. Практический курс спектроскопии ядерного магнитного резонанса. Методическая разработка, МГУ, Химический факультет, 2006.
- 14. K.H. Lundstrom, ed., Structural Genomics on Membrane Proteins, 1 edition, CRC Press, Boca Raton, 2006.
- 15. R. Grisshammer, S. Buchanan. Structural Biology on Membrane Proteins, RSC Publishing, 2006
- 16. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell. 5th ed. Garland Science, New York, USA, 2007.
- 17. B. Hille, Ion Channels of Excitable Membranes (3rd ed.), Sinauer Associates Inc., Sunderland, MA, 2001.
- 18. K.H. Lundstrom, ed., Structural Genomics on Membrane Proteins, 1st edition, CRC Press, Boca Raton, 2006.
- 19. D.W. Murhammer Ed. Baculovirus and Insect Cell Expression Protocols. Series: Methods in Molecular Biology, Vol. 1350, 2015, Humana Press.
- 20. K. Alexandrov, W.A. Johnston, (Eds.) Cell-Free Protein Synthesis/ Methods and Protocols. Series: Methods in Molecular Biology, Vol. 1118, 2014, Humana Press.
- 21. A. Gautier, M.J. Hinner (Eds.) Site-Specific Protein Labeling/ Methods and Protocols Series: Methods in Molecular Biology, Vol. 1118, 2014, Humana Press.

Дополнительная литература:

- 1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell. 5th ed. Garland Science, New York, USA, 2007.
- 2. Schuchardt S, Sickmann A. Protein identification using mass spectrometry: a method overview. EXS. 2007; 97:141-170. 3. Chen G, Pramanik BN, Liu YH, Mirza UA. Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery. J Mass Spectrom. 2007, 42:279-287.
- 3. Anderson, N. L., Anderson, N. G., The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 1, 845-867.
- 4. Chertov, O., Biragyn, A., Kwak, L. W., Simpson, J. T., et al., Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 2004, 4, 1195-1203.
- 5. Kawashima, Y., Fukutomi, T., Tomonaga, T., Takahashi, H., et al., High-yield peptide-extraction
- 6. method for the discovery of subnanomolar biomarkers from small serum samples. J Proteome Res 2010, 9, 1694–1705.
- 7. Kozak, K. R., Su, F., Whitelegge, J. P., Faull, K., et al., Characterization of serum biomarkers for detection of early-stage ovarian cancer. Proteomics 2005, 5, 4589-4596.