Nat Struct Mol Biol, 2022, 29(11):1056-1067

A structural biology community assessment of AlphaFold2 applications

Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.

Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P

IBCH: 10331
Ссылка на статью в журнале: https://www.nature.com/articles/s41594-022-00849-w
Кол-во цитирований на 02.2024: 154
Данные статьи проверены модераторами 2022-12-01

Список научных проектов, где отмечена публикация

  1. 842490. . Внебюджетное финансирование.
  2. R272-2017-4528. . Внебюджетное финансирование.
  3. NNF18OC0033950. . Внебюджетное финансирование.
  4. GNT1174405. . Внебюджетное финансирование.
  5. NNF18OC0033950. . Внебюджетное финансирование.
  6. VR-2016-06301. . Внебюджетное финансирование.
  7. SNIC 2021/6-197. . Внебюджетное финансирование.
  8. Berzelius-2021-29. . Внебюджетное финансирование.
  9. PID2019-107043RA-I00. . Внебюджетное финансирование.
  10. RYC2019-026415-I. . Внебюджетное финансирование.
  11. RTI2018-096653-B-I00. . Внебюджетное финансирование.
  12. DP5OD026389. . Внебюджетное финансирование.
  13. R21AI156595. . Внебюджетное финансирование.
  14. MCB2032259. . Внебюджетное финансирование.
  15. 735929LPI. . Внебюджетное финансирование.
  16. Системaтический анализ трансляции коротких Открытых Рамок Считывания (кОРC) и исследование свойств их пептидных продуктов (6 Января 2020 года — 31 Декабря 2024 года). Андреев Д.Е., Баранов П.В.. Грант, РНФ.