Roman G. Efremov

Personal information

1987—1991: laboratory courses in optical spectral methods and data processing for students of biophysics.

M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow.

1993—1996: cycle of lectures and practical courses (50 hours/year) entitled: “Empirical methods in computer simulations of molecules” for masters specializing in Molecular Engineering.

University of Science & Technology of Lille, School of Engineers (EUDIL).

1997–present: lectures for 6th-year students of the Moscow Institute of Physics and Technology (in IBCh RAS).

1999–present: lectures for 5th-year students of the Moscow Institute of Physics and Technology (in the Joint Supercomputer Center RAS).

2001–present: lectures for 2d- and 3d-year students of the Moscow State University, Biological Faculty, Department of Bioengineering.


PeriodCountry, cityEducation institutionAdditional info
1977–1983 Russia, Moscow Moscow Engeneering and Physical Institute, Department of Experimental and Theoretical Physics Ms in biophysics and radiation physics (thesis: «Mathematical algorithms in protein secondary structure determination based on Raman spectroscopic data and prediction techniques»)
1986 Russia, Moscow M.V. Lomonosov Moscow State University (biological faculty) PhD in physics & mathematics (thesis: Topography and microenvironment of chromophore-binding sites in bacterial and visual rhodopsins. Resonance Raman spectroscopy and quantum chemical calculations)
1999 Russia, Moscow M.V. Lomonosov Moscow State University (biological faculty) DSc in physics & mathematics; specialization: molecular biophysics (thesis: Molecular modeling of membrane-bound domains of proteins and peptides)
2007 Russia, Moscow M.V. Lomonosov Moscow State University (biological faculty) Awarded professor dedree in biophysics

Main scientific results

Principal research results are related to development and application of novel methods for studies of the spatial structure of proteins and peptides using optical spectroscopy and molecular modeling. The results were published in some 100 papers in peer-reviewed scientific journals.

1985—1992. A series of studies dealing with the development of new methods in resonance (RR) and surface-enhanced (SER) Raman scattering of peptides and proteins. SER spectra of two membrane proteins — bacterial and visual rhodopsins — were detected for the first time. Based on the spectral data and the results of quantum chemical calculations, topology of the chromophore-binding sites of the two proteins was investigated. For a number of membrane proteins, UV RR spectra were obtained for the first time. Efficient methods for digital processing of signals in RR spectra of proteins were elaborated.

1992-1997. A series of molecular modeling studies of the structure of transmembrane (TM) domain of Na,K-ATPase was carried out. Detailed mapping of the spatial hydrophobic/hydrophilic properties of TM helices was done for the first time using the concept of the molecular hydrophobicity potential (MHP) approach. The MHP-technique was also employed to assess hydrophobic organization of a number of water-soluble and membrane proteins and peptides.

1997—2001. An original theoretical model of implicit membrane was developed. The model is destined for simulations of proteins and peptides in membrane-mimic environment. Computational results obtained for a large number of transmembrane and peripheral peptides were shown to agree well with the experimental data.

2002–present. Development of state-of-the-art multiscale approaches in computational modeling of peptides and proteins in membranes of different composition and in water. Application of the approaches to study protein-protein, protein-membrane, and protein-ligand interactions. Employment of the developed techniques in investigation of peripheral and integral membrane proteins, membrane-active peptides, as well as in rational molecular design of novel biologically active compounds with predefined properties — acting on targets in cell membranes. Creation of the united informational/computational complex for high-throughput molecular modeling of proteins and peptides.

Selected publications

  1. Kasheverov I.E., Chugunov A.O., Kudryavtsev D.S., Ivanov I.A., Zhmak M.N., Shelukhina I.V., Spirova E.N., Tabakmakher V.M., Zelepuga E.A., Efremov R.G., Tsetlin V.I. (2016). High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Sci Rep 6, 36848 [+]

    Despite some success for small molecules, elucidating structure-function relationships for biologically active peptides - the ligands for various targets in the organism - remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules' surface as projection maps, which enables the exposure of the structure-function dependencies. Here, we use PST to uncover the "activity pattern" in α-conotoxins - neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by "standard" structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.

  2. Панина И.С., Нольде Д.Е., Чугунов А.О., Ефремов Р.Г. (2016). Структурно-динамическая модель комплекса лантибиотика низин с липидом-II в биомембране. Актуальные вопросы биологической физики и химии 1, 263–267 ID:1680
  3. Chugunov A.O., Volynsky P.E., Krylov N.A., Nolde D.E., Efremov R.G. (2016). Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci Rep 6, 33112 [+]

    Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed "iris-like" symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.

  4. Dubovskii P.V., Vassilevski A.A., Kozlov S.A., Feofanov A.V., Grishin E.V., Efremov R.G. (2015). Latarcins: versatile spider venom peptides. Cell. Mol. Life Sci. 72 (23), 4501–22 [+]

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.

  5. Lyukmanova E.N., Shenkarev Z.O., Shulepko M.A., Paramonov A.S., Chugunov A.O., Janickova H., Dolejsi E., Dolezal V., Utkin Y.N., Tsetlin V.I., Arseniev A.S., Efremov R.G., Dolgikh D.A., Kirpichnikov M.P. (2015). Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. J. Biol. Chem. 290 (39), 23616–30 [+]

    Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.

  6. Kuznetsov A.S., Volynsky P.E., Efremov R.G. (2015). Role of the Lipid Environment in the Dimerization of Transmembrane Domains of Glycophorin A. Acta Naturae 7 (4), 122–7 [+]

    An efficient computational approach is developed to quantify the free energy of a spontaneous association of the α-helices of proteins in the membrane environment. The approach is based on the numerical decomposition of the free energy profiles of the transmembrane (TM) helices into components corresponding to protein-protein, protein-lipid, and protein-water interactions. The method was tested for the TM segments of human glycophorin A (GpA) and two mutant forms, Gly83Ala and Thr87Val. It was shown that lipids make a significant negative contribution to the free energy of dimerization, while amino acid residues forming the interface of the helix-helix contact may be unfavorable in terms of free energy. The detailed balance between different energy contributions is highly dependent on the amino acid sequence of the TM protein segment. The results show the dominant role of the environment in the interaction of membrane proteins that is changing our notion of the driving force behind the spontaneous association of TM α-helices. Adequate estimation of the contribution of the water-lipid environment thus becomes an extremely urgent task for a rational design of new molecules targeting bitopic membrane proteins, including receptor tyrosine kinases.

  7. Kasheverov I.E., Kudryavtsev D.S., Ivanov I.A., Zhmak M.N., Chugunov A.O., Tabakmakher V.M., Zelepuga E.A., Efremov R.G., Tsetlin V.I. (2015). Rational design of new ligands for nicotinic receptors on the basis of α-conotoxin PnIA. Dokl. Biochem. Biophys. 461, 106–9 [+]

    A variety of different subtypes of nicotinic acetylcholine receptors (nAChRs) and their involvement in a number of diseases and pathologies (Parkinson’s and Alzheimer’s diseases, schizophrenia, myasthenia, nicotine addiction) dictates the needs in potent and selective ligands for each subtype. These ligands can be used as a tool for detection and characterization of the distinct nAChR subtypes, as well as be the basis for drug design. Novel cholinergic ligands can emerge in the result of search among natural sources or design (with the use of modern computer modeling) on the basis of known molecules. The significance of the first way was confirmed in our hands by the detection of affinities of a set of marine alkaloids from sponges and ascidians towards some receptor subtypes. The most active of them — makaluvamines — showed micromolar affinity for muscle and neuronal α7 nAChRs. Application of the recently presented Protein Surface Topography method to known natural antagonist of some neuronal nAChRs — α-conotoxin PnIA — resulted in design of new potent analogs with nanomolar affinities for α7 nAChR. Radioactive derivatives of these analogs were successfully applied in radioligand tests for characterization of novel compounds and could be perspective as well for detection of α7 nAChR in the various preparations. Combining these two ways (search and design) was demonstrated in the synthesis of small peptide compounds on the basis of discovered by us in venom of Burmese Viper linear peptide azemiopsin — powerful blocker of muscle-type nAChRs. Some designed peptides have retained a certain affinity to receptor and showed high practical potential: in the absence of toxicity they contributed to the reduction of facial wrinkles (patent application for cosmetic use RU2013102410; PCT/RU2014/000032).

  8. Malakhov M.V., Dubinnyi M.A., Vlasova N.V., Zgoda V.G., Efremov R.G., Boldyrev I.A. (2014). End-group differentiating ozonolysis of furocoumarins. RSC Advances 4 (106), 61277–61280 [+]

    Ozonolysis of furocoumarins followed by reductive work-up yields not only common symmetrical dialdehydes, but also o-formylumbelliferones with moderate-to-high yields. Simultaneous formation of both products accounts for the transformation of carbonyl oxides – products of primary ozonide ring opening.

  9. Чугунов А.О., Ефремов Р.Г. (2014). Поверхность молекулы -- источник биологической информации. Природа  (10), 3–10 [+]

    Компьютерное моделирование биологических молекул зачастую основано не на квантовой механике, описывающей строение вещества максимально корректно, а на наборе приближений, уводящих нас от физических «истоков», но позволяющих решать практически важные задачи с использованием ЭВМ. Одним из таких упрощений является концепция молекулярных поверхностей, представляющая молекулу в виде твердого тела, на поверхности которого распределены какие-либо физические свойства. Несмотря на кажущийся примитивизм, этот подход является довольно плодотворным, внося свою лепту в решение актуальных проблем молекулярной биологии, — например, дизайна новых антибиотиков и изучения молекулярных механизмов заболеваний.

  10. Кузнецов А.С., Дубовский П.В., Воронцова О.В., Феофанов А.В., Ефремов Р.Г. (2014). Взаимодействие линейных катионных пептидов с фосфолипидными мембранами и полимерами сиаловой кислоты. Биохимия 79 (5), 583–594583–594 ID:1123
  11. Koromyslova A.D., Chugunov A.O., Efremov R.G. (2014). Deciphering Fine Molecular Details of Proteins' Structure and Function with a Protein Surface Topography (PST) Method. Journal of chemical information and modeling 54 (4), 1189–99 [+]

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them-protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  12. Polyansky A.A., Chugunov A.O., Volynsky P.E., Krylov N.A., Nolde D.E., Efremov R.G. (2014). PREDDIMER: a web server for prediction of transmembrane helical dimers. Bioinformatics 30 (6), 889–90 [+]

    Here we present PREDDIMER, a web tool for prediction of dimer structure of transmembrane (TM) helices. PREDDIMER allows (i) reconstruction of a number of dimer structures for given sequence(s) of TM protein fragments, (ii) ranking and filtering of predicted structures according to respective values of a scoring function, (iii) visualization of predicted 3D dimer structures and (iv) visualization of surface hydrophobicity of TM helices and their contacting (interface) regions represented as 2D maps.

  13. Chugunov A.O., Volynsky P.E., Krylov N.A., Boldyrev I.A., Efremov R.G. (2014). Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes. Sci Rep 4, 7462 [+]

    Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and "branched" hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems.

  14. Dubovskii P.V., Konshina A.G., Efremov R.G. (2013). Cobra Cardiotoxins: Membrane Interactions and Pharmacological Potential. Curr. Med. Chem. 21 (3), 270–287 [+]

    Natural polycationic membrane-active peptides typically lack disulfide bonds and exhibit fusion, cell-penetrating, antimicrobial activities. They are mostly unordered in solution, but adopt a helical structure, when bound to phospholipid membranes. Structurally different are cardiotoxins (or cytotoxins, СTs) from cobra venom. They are fully -structured molecules, characterized by the three-finger fold (TFF). Affinity of CTs to lipid bilayer was shown to depend on amino acid sequence in the tips of the three loops. In the present review, CT-membrane interactions are analyzed through the prism of data on binding of the toxins to phospholipid liposomes and detergent micelles, as well as their structural and computational studies in membrane mimicking environments. We assess different hydrophobicity scales to compare membrane partitioning of various CTs and their membrane effects. A comparison of hydrophobic/hydrophilic properties of CTs and linear polycationic peptides provides a key to their biological activity and creates a fundamental basis for rational design of new membrane-interacting compounds, including new promising drugs. For instance, since the viewpoint of the data obtained on model lipid membranes, cytotoxic activity of CTs against cancer cells is discussed.

  15. Krylov N.A., Pentkovsky V.M., Efremov R.G. (2013). Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations. ACS Nano 7 (10), 9428–42 [+]

    The atomic-scale diffusion of water in the presence of several lipid bilayers mimicking biomembranes is characterized via unconstrained molecular dynamics (MD) simulations. Although the overall water dynamics corresponds well to literature data, namely, the efficient braking near polar head groups of lipids, a number of interesting and biologically relevant details observed in this work have not been sufficiently discussed so far; for instance, the fact that waters "sense" the membrane unexpectedly early, before water density begins to decrease. In this "transitional zone" the velocity distributions of water and their H-bonding patterns deviate from those in the bulk solution. The boundaries of this zone are well preserved even despite the local (<1 nm size) perturbation of the lipid bilayer, thus indicating a decoupling of the surface and bulk dynamics of water. This is in excellent agreement with recent experimental data. Near the membrane surface, water movement becomes anisotropic, that is, solvent molecules preferentially move outward the bilayer. Deep in the membrane interior, the velocities can even exceed those in the bulk solvent and undergo large-scale fluctuations. The analysis of MD trajectories of individual waters in the middle part of the acyl chain region of lipids reveals a number of interesting rare phenomena, such as the fast (ca. 50 ps) breakthrough across the membrane or long-time (up to 750 ps) "roaming" between lipid leaflets. The analysis of these events was accomplished to delineate the mechanisms of spontaneous water permeation inside the hydrophobic membrane core. It was shown that such nontrivial dynamics of water in an "alien" environment is driven by the dynamic heterogeneities of the local bilayer structure and the formation of transient atomic-scale "defects" in it. The picture observed in lipid bilayers is drastically different from that in a primitive membrane mimic, a hydrated cyclohexane slab. The possible biological impact of such phenomena in equilibrated lipid bilayers is discussed.

  16. Chugunov A.O., Koromyslova A.D., Berkut A.A., Peigneur S., Tytgat J., Polyansky A.A., Pentkovsky V.M., Vassilevski A.A., Grishin E.V., Efremov R.G. (2013). Modular Organization of α-Toxins from Scorpion Venom Mirrors Domain Structure of Their Targets, Sodium Channels. J. Biol. Chem. 288 (26), 19014–27 [+]

    To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Navs) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Navs is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Navs suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Navs. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Navs.

  17. Volynsky P.E., Polyansky A.A., Fakhrutdinova G.N., Bocharov E.V., Efremov R.G. (2013). Role of Dimerization Efficiency of Transmembrane Domains in Activation of Fibroblast Growth Factor Receptor 3. J. Am. Chem. Soc. , [+]

    Mutations in transmembrane (TM) domains of receptor tyrosine kinases are shown to cause a number of inherited diseases and cancer development. Here, we use a combined molecular modeling approach to understand molecular mechanism of effect of G380R and A391E mutations on dimerization of TM domains of human fibroblast growth factor receptor 3 (FGFR3). According to results of Monte Carlo conformational search in the implicit membrane and further molecular dynamics simulations, TM dimer of this receptor is able to form a number of various conformations, which differ significantly by the free energy of association in a full-atom model bilayer. The aforementioned mutations affect dimerization efficiency of TM segments and lead to repopulation of conformational ensemble for the dimer. Particularly, both mutations do not change the dimerization free energy of the predominant (putative "non-active") symmetric conformation of TM dimer, while affect dimerization efficiency of its asymmetric ("intermediate") and alternative symmetric (putative "active") models. Results of our simulations provide novel atomistic prospective of the role of G380 and A391E mutations in dimerization of TM domains of FGFR3 and their consecutive contributions to the activation pathway of the receptor.

  18. Chugunov A., Pyrkova D., Nolde D., Polyansky A., Pentkovsky V., Efremov R. (2013). Lipid-II forms potential "landing terrain" for lantibiotics in simulated bacterial membrane. Sci Rep 3, 1678 [+]

    Bacterial cell wall is targeted by many antibiotics. Among them are lantibiotics, which realize their function via interaction with plasma membrane lipid-II molecule - a chemically conserved part of the cell wall synthesis pathway. To investigate structural and dynamic properties of this molecule, we have performed a series of nearly microsecond-long molecular dynamics simulations of lipid-II and some of its analogs in zwitterionic single component and charged mixed simulated phospholipid bilayers (the reference and the mimic of the bacterial plasma membrane, respectively). Extensive analysis revealed that lipid-II forms a unique "amphiphilic pattern" exclusively on the surface of the simulated bacterial membrane (and not in the reference one). We hypothesize that many lantibiotics exploit the conserved features of lipid-II along with characteristic modulation of the bacterial membrane as the "landing site". This putative recognition mechanism opens new opportunities for studies on lantibiotics action and design of novel armament against resistant bacterial strains.

  19. Blanchevoye C., Floquet N., Scandolera A., Baud S., Maurice P., Bocquet O., Blaise S., Ghoneim C., Cantarelli B., Delacoux F., Dauchez M., Efremov R.G., Martiny L., Duca L., Debelle L. (2013). Interaction between the elastin peptide VGVAPG and human elastin binding protein. J. Biol. Chem. 288 (2), 1317–28 [+]

    The elastin binding protein (EBP), a spliced variant of lysosomal β-galactosidase, is the primary receptor of elastin peptides that have been linked to emphysema, aneurysm and cancer progression. The sequences recognized by EBP share the XGXXPG consensus pattern found in numerous matrix proteins, notably in elastin where the VGVAPG motif is repeated. To delineate the elastin binding site of human EBP, we built a homology model of this protein and docked VGVAPG on its surface. Analysis of this model suggested that Gln-97 and Asp-98 were required for interaction with VGVAPG because they contribute to the definition of a pocket thought to represent the elastin binding site of EBP. Additionally, we proposed that Leu-103, Arg-107, and Glu-137 were essential residues because they could interact with VGVAPG itself. Site-directed mutagenesis experiments at these key positions validated our model. This work therefore provides the first structural data concerning the interaction of the VGVAPG with its cognate receptor. The present structural data should now allow the development of EBP-specific antagonists.

  20. Aseev L.V., Chugunov A.O., Efremov R.G., Boni I.V. (2013). A single missense mutation in a coiled-coil domain of Escherichia coli ribosomal protein S2 confers a thermosensitive phenotype that can be suppressed by ribosomal protein S1. J. Bacteriol. 195 (1), 95–104 [+]

    Ribosomal protein S2 is an essential component of translation machinery, and its viable mutated variants conferring distinct phenotypes serve as a valuable tool in studying the role of S2 in translation regulation. One of a few available rpsB mutants, rpsB1, shows thermosensitivity and ensures enhanced expression of leaderless mRNAs. In this study, we identified the nature of the rpsB1 mutation. Sequencing of the rpsB1 allele revealed a G-to-A transition in the part of the rpsB gene which encodes a coiled-coil domain of S2. The resulting E132K substitution resides in a highly conserved site, TKKE, a so-called N-terminal capping box, at the beginning of the second alpha helix. The protruding coiled-coil domain of S2 is known to provide binding with 16S rRNA in the head of the 30S subunit and, in addition, to interact with a key mRNA binding protein, S1. Molecular dynamics simulations revealed a detrimental impact of the E132K mutation on the coiled-coil structure and thereby on the interactions between S2 and 16S rRNA, providing a clue for the thermosensitivity of the rpsB1 mutant. Using a strain producing a leaderless lacZ transcript from the chromosomal lac promoter, we demonstrated that not only the rpsB1 mutation generating S2/S1-deficient ribosomes but also the rpsA::IS10 mutation leading to partial deficiency in S1 alone increased translation efficiency of the leaderless mRNA by about 10-fold. Moderate overexpression of S1 relieved all these effects and, moreover, suppressed the thermosensitive phenotype of rpsB1, indicating the role of S1 as an extragenic suppressor of the E132K mutation.

  21. Чугунов А.О., Нольде Д.Е., Пыркова Д.В., Полянский А.А., Пентковский В.М., Ефремов Р.Г. (2013). На пути к новым антибиотикам. Суперкомпьютеры 12, 34–36 [+]

    Проблема резистентности бактерий к действию антибиотиков серьезна как никогда, и медицина всеми силами ищет пути к новым бактерицидным веществам, способным сохранять эффективность в течение долгих лет. Современная биофизика поможет ей в этом — наблюдение за молекулой антибиотика, которая «атакует» бактериальную клетку, подскажет ученым, как создать новые вещества, убивающие бактерий и безвредные для человеческого организма. Возможность для такого наблюдения дают суперкомпьютерные расчеты, а также современные физические модели и математические алгоритмы, предназначенные для изучения в вычислительном эксперименте структуры, динамики и функций сложнейших биологических супрамолекулярных систем. Исследователи из Института биоорганической химии РАН, используя ресурсы нового суперкомпьютера, установленного в лаборатории iScalare МФТИ, изучили на атомном уровне особенности организации мембраны бактерий, используя которые антибиотики преодолевают защитные системы клетки и оказывают антимикробное действие. Полученный результат указывает на возможность разработки нового поколения антибиотиков, избавленных от бремени резистентности.

  22. Чугунов А.О., Полянский А.А., Ефремов Р.Г. (2013). Физическая водобоязнь. Природа 1, 24–34 [+]

    Лист лотоса, по которому вода бегает, собравшись в шарики, водоотталкивающие поверхности и защитные составы для обуви, плавающие в бульоне кружки масла — всё это примеры свойства молекул, называемого гидрофобностью. Помимо этого, гидрофобный эффект играет важную биологическую роль: сворачивание и правильная работа белковых молекул, формирование биомембран, распознавание молекулами друг друга также «запрограммированы» с использованием гидрофобных свойств. Интересно, что гидрофобный эффект не сводится к «обычным» физическим взаимодействиям: за ним стоит Второй закон термодинамики и величина, именуемая энтропией.

  23. Pyrkova D.V., Tarasova N.K., Krylov N.A., Nolde D.E., Pentkovsky V.M., Efremov R.G. (2013). Dynamic clustering of lipids in hydrated two-component membranes: results of computer modeling and putative biological impact. J. Biomol. Struct. Dyn. 31 (1), 87–95 [+]

    Delineation and analysis of lateral clustering of lipids in model bilayers is an important step toward understanding of the physical processes underlying formation of lipid domains and rafts in cell membranes. Computer modeling methods represent a powerful tool to address the problem since they can detect clusters of only few lipid molecules - this issue still resists easy characterization with modern experimental techniques. In this work, we propose a computational method to detect and analyze parts of membrane with different packing densities and hydrogen bonding patterns. A series of one- and two-component fluid systems containing lipids with the same polar heads and different acyl chains, dioleoylphosphatidylcholine (18:1) and dipalmitoylphosphatidylcholine (16:0), or with same acyl chains and different polar heads, dioleoylphosphatidylserine (18:1) and dioleoylphosphatidylcholine (18:1), were studied via molecular dynamics simulations. Four criteria of clustering were considered. It was shown that the water-lipid interface of biomembranes represents a highly dynamic and "mosaic" picture, whose parameters depend on the bilayer composition. Some systems (e.g. with 20-30% of the anionic lipid) demonstrate unusual clustering properties and demand further investigation at molecular level. Lateral microheterogeneities in fluid lipid bilayers seem to be among the most important factors determining the nature of the membrane-water interface in a cell.

  24. Charlier L., Topin J., Ronin C., Kim S.K., Goddard W.A. 3rd, Efremov R., Golebiowski J. (2012). How broadly tuned olfactory receptors equally recognize their agonists. Human OR1G1 as a test case. Cell. Mol. Life Sci. 69 (24), 4205–13 [+]

    The molecular features that dominate the binding mode of agonists by a broadly tuned olfactory receptor are analyzed through a joint approach combining cell biology, calcium imaging, and molecular modeling. The odorant/receptor affinities, estimated through statistics accrued during molecular dynamics simulations, are in accordance with the experimental ranking. Although in many systems receptors recognize their target through a network of oriented interactions, such as H-bonding, the binding by broadly tuned olfactory receptors is dominated by non-polar terms. We show how such a feature allows chemicals belonging to different chemical families to similarly activate the receptors through compensations of interactions within the binding site.

  25. Polyansky A.A., Chugunov A.O., Vassilevski A.A., Grishin E.V., Efremov R.G. (2012). Recent Advances in Computational Modeling of α-Helical Membrane- Active Peptides. Curr. Protein Pept. Sci. 13 (7), 644–57 [+]

    Membrane-active peptides (MAPs) represent a broad variety of molecules, and biological functions of most are directly associated with their ability to interact with membranes. Taking into account the effect of MAPs on living cells they can be nominally divided into three major groups - fusion (FPs), antimicrobial/cytolytic (AMPs/CPs) and cellpenetrating (CPPs) peptides. Although spatial structure of different MAPs varies to a great extent, linear α-helical peptides represent the most studied class. These peptides possess relatively simple structural organization and share a set of similar molecular features, which make them very attractive to both experimental and computational studies. Here, we review different molecular modeling methods in prospective of their applications to study of α-helical MAPs. The most sophisticated of them, such as molecular dynamics simulations, give atomistic information about molecular interactions driving peptide binding to the water-lipid interface, cooperative mechanisms of membrane destabilization and thermodynamics of these processes. Significant progress has been achieved in this field during the last few years, resulting in a possibility to observe computationally MAPs action in realistic peptide-to-lipid ratios and over the microsecond timescale. Other relatively simple but powerful approaches allow assessment of important characteristics of MAPs such as α-helical propensity, amphiphilicity, total hydrophobicity, and spatial distribution of charge and hydrophobic/hydrophilic properties, etc. Altogether, computational methods provide efficient basis for rational design of MAPs with predefined properties and a spectrum of biological activities.

  26. Polyansky A.A., Volynsky P.E., Efremov R.G. (2012). Multistate organization of transmembrane helical protein dimers governed by the host membrane. J. Am. Chem. Soc. 134 (35), 14390–400 [+]

    Association of transmembrane (TM) helices taking place in the cell membrane has an important contribution to the biological function of bitopic proteins, among which receptor tyrosine kinases represent a typical example and a potent target for medical applications. Since this process depends on a complex interplay of different factors (primary structures of TM domains and juxtamembrane regions, composition and phase of the local membrane environment, etc.), it is still far from being fully understood. Here, we present a computational modeling framework, which we have applied to systematically analyze dimerization of 18 TM helical homo- and heterodimers of different bitopic proteins, including the family of epidermal growth factor receptors (ErbBs). For this purpose, we have developed a novel surface-based modeling approach, which not only is able to predict particular conformations of TM dimers in good agreement with experiment but also provides screening of their conformational heterogeneity. Using all-atom molecular dynamics simulations of several of the predicted dimers in different model membranes, we have elucidated a putative role of the environment in selection of particular conformations. Simulation results clearly show that each particular bilayer preferentially stabilizes one of possible dimer conformations, and that the energy gain depends on the interplay between structural properties of the protein and the membrane. Moreover, the character of protein-driven perturbations of the bilayer is reflected in the contribution of a particular membrane to the free energy gain. We have found that the approximated dimerization strength for ErbBs family can be related to their oncogenic ability.

  27. Konshina A.G., Dubovskii P.V., Efremov R.G. (2012). Structure and dynamics of cardiotoxins. Curr. Protein Pept. Sci. 13 (6), 570–84 [+]

    Cytotoxins (or cardiotoxins; CTs) are toxins from cobra venom characterized by the three-finger (TF) fold. CTs are on average 60-residue-long peptides, possessing as many as 4 disulfide bonds. The elements of antiparallel β-structure take origin from the hydrophobic core formed by the disulfides. The β-strands adopt the shape of the three loops, giving the name of the fold. While neurotoxins (NTs) - also TF proteins from snake venom - exert their effect through specific interactions with protein receptors, no specific protein target has been found for CTs. Unlike NTs, CTs are amphiphilic and cytotoxic against a variety of cells, including cancer ones. Thus, the hypothesis that the activity of CTs is caused by their interactions with lipid membranes is currently central. To understand molecular basis behind variations in toxicities of CTs highly homologous in their sequences, detailed knowledge of their structure and dynamics is required. The present review summarizes experimental and computational data on the spatial organization of CTs and their dynamics in various environments (aqueous solution, membranous milieus).

  28. Чугунов А.О., Полянский А.А., Ефремов Р.Г. (2012). Липидный фундамент жизни. Природа  (3), 3–12 [+]

    Жизнь в том виде, в каком мы ее знаем, невозможно представить без биомембраны, разделяющей «внутренний мир» клетки и всё остальное пространство. Мембрана обеспечивает взаимодействие клетки с внешней средой, избирательно пропуская многие вещества, а также является средой протекания множества биохимических процессов. И хотя большую часть полезной работы выполняют белки, которыми мембрана буквально «нашпигована», роль липидного матрикса не стоит недооценивать. Липиды — это не просто «океан», в котором плавают белки. Это «умный» океан, чьи физико-химические свойства были тщательно подобраны в ходе эволюции так, чтобы создать эффективную платформу для функционирования и взаимодействия мембранных белков.

  29. Ostapchenko V.G., Gasparian M.E., Kosinsky Y.A., Efremov R.G., Dolgikh D.A., Kirpichnikov M.P. (2012). Dissecting structural basis of the unique substrate selectivity of human enteropeptidase catalytic subunit. J. Biomol. Struct. Dyn. 30 (1), 62–73 [+]

    Enteropeptidase is a key enzyme in the digestion system of higher animals. It initiates enzymatic cascade cleaving trypsinogen activation peptide after a unique sequence DDDDK. Recently, we have found specific activity of human enteropeptidase catalytic subunit (L-HEP) being significantly higher than that of its bovine ortholog (L-BEP). Moreover, we have discovered that L-HEP hydrolyzed several nonspecific peptidic substrates. In this work, we aimed to further characterize species-specific enteropeptidase activities and to reveal their structural basis. First, we compared hydrolysis of peptides and proteins lacking DDDDK sequence by L-HEP and L-BEP. In each case human enzyme was more efficient, with the highest hydrolysis rate observed for substrates with a large hydrophobic residue in P2-position. Computer modeling suggested enzyme exosite residues 96 (Arg in L-HEP, Lys in L-BEP) and 219 (Lys in L-HEP, Gln in L-BEP) to be responsible for these differences in enteropeptidase catalytic activity. Indeed, human-to-bovine mutations Arg96Lys, Lys219Gln shifted catalytic properties of L-HEP toward those of L-BEP. This effect was amplified in case of the double mutation Arg96Lys/Lys219Gln, but still did not cover the full difference in catalytic activities of human and bovine enzymes. To find a missing link, we studied monopeptide benzyl-arginine-β-naphthylamide hydrolysis. L-HEP catalyzed it with an order lower K (m) than L-BEP, suggesting the monopeptide-binding S1 site input into catalytic distinction between two enteropeptidase species. Together, our findings suggest structural basis of the unique catalytic properties of human enteropeptidase and instigate further studies of its tentative physiological and pathological roles.

  30. Чугунов А.О., Ефремов Р.Г. (2010). Компьютерные игры в молекулярную биофизику. Природа  (12), 36–43 [+]

    Кконцу XX в. грань между «классическими» науками практически стерлась, исследования стали междисциплинарными. В текущем столетии тенденция усиливается — слияние «обычной» (хотя тоже междисциплинарной!) молекулярной биофизики и того, что называют theoretical computer science, породило необыкновенную область исследований — компьютерный, или in silico, эксперимент. Но прежде чем рассказать о методической подоплеке подхода in silico и о его конкретном использовании для имитационного изучения «жизни» биологических мембран и населяющих их белковых молекул, напомним предысторию.

  31. Bocharov E.V., Mayzel M.L., Volynsky P.E., Mineev K.S., Tkach E.N., Ermolyuk Y.S., Schulga A.A., Efremov R.G., Arseniev A.S. (2010). Left-handed dimer of EphA2 transmembrane domain: Helix packing diversity among receptor tyrosine kinases. Biophys. J. 98 (5), 881–9 [+]

    The Eph receptor tyrosine kinases and their membrane-bound ephrin ligands control a diverse array of cell-cell interactions in the developing and adult organisms. During signal transduction across plasma membrane, Eph receptors, like other receptor tyrosine kinases, are involved in lateral dimerization and subsequent oligomerization presumably with proper assembly of their single-span transmembrane domains. Spatial structure of dimeric transmembrane domain of EphA2 receptor embedded into lipid bicelle was obtained by solution NMR, showing a left-handed parallel packing of the transmembrane helices (535-559)(2). The helices interact through the extended heptad repeat motif L(535)X(3)G(539)X(2)A(542)X(3)V(546)X(2)L(549) assisted by intermolecular stacking interactions of aromatic rings of (FF(557))(2), whereas the characteristic tandem GG4-like motif A(536)X(3)G(540)X(3)G(544) is not used, enabling another mode of helix-helix association. Importantly, a similar motif AX(3)GX(3)G as was found is responsible for right-handed dimerization of transmembrane domain of the EphA1 receptor. These findings serve as an instructive example of the diversity of transmembrane domain formation within the same family of protein kinases and seem to favor the assumption that the so-called rotation-coupled activation mechanism may take place during the Eph receptor signaling. A possible role of membrane lipid rafts in relation to Eph transmembrane domain oligomerization and Eph signal transduction was also discussed.

  32. Volynsky P.E., Mineeva E.A., Goncharuk M.V., Ermolyuk Y.S., Arseniev A.S., Efremov R.G. (2010). Computer simulations and modeling-assisted ToxR screening in deciphering 3D structures of transmembrane alpha-helical dimers: ephrin receptor A1. Phys Biol 7, 16014 [+]

    Membrane-spanning segments of numerous proteins (e.g. receptor tyrosine kinases) represent a novel class of pharmacologically important targets, whose activity can be modulated by specially designed artificial peptides, the so-called interceptors. Rational construction of such peptides requires understanding of the main factors driving peptide-peptide association in lipid membranes. Here we present a new method for rapid prediction of the spatial structure of transmembrane (TM) helix-helix complexes. It is based on computer simulations in membrane-like media and subsequent refinement/validation of the results using experimental studies of TM helix dimerization in a bacterial membrane by means of the ToxR system. The approach was applied to TM fragments of the ephrin receptor A1 (EphA1). A set of spatial structures of the dimer was proposed based on Monte Carlo simulations in an implicit membrane followed by molecular dynamics relaxation in an explicit lipid bilayer. The resulting models were employed for rational design of wild-type and mutant genetic constructions for ToxR assays. The computational and the experimental data are self-consistent and provide an unambiguous spatial model of the TM dimer of EphA1. The results of this work can be further used to develop new biologically active 'peptide interceptors' specifically targeting membrane domains of proteins.

  33. Lashkov A.A., Zhukhlistova N.E., Gabdoulkhakov A.H., Shtil A.A., Efremov R.G., Betzel C., Mikhailov A.M. (2010). The X-ray structure of Salmonella typhimurium uridine nucleoside phosphorylase complexed with 2,2'-anhydrouridine, phosphate and potassium ions at 1.86 A resolution. Acta Crystallogr. D Biol. Crystallogr. 66 (Pt 1), 51–60 [+]

    Uridine nucleoside phosphorylase is an important drug target for the development of anti-infective and antitumour agents. The X-ray crystal structure of Salmonella typhimurium uridine nucleoside phosphorylase (StUPh) complexed with its inhibitor 2,2'-anhydrouridine, phosphate and potassium ions has been solved and refined at 1.86 A resolution (R(cryst) = 17.6%, R(free) = 20.6%). The complex of human uridine phosphorylase I (HUPhI) with 2,2'-anhydrouridine was modelled using a computational approach. The model allowed the identification of atomic groups in 2,2'-anhydrouridine that might improve the interaction of future inhibitors with StUPh and HUPhI.

  34. Novoseletsky V.N., Pyrkov T.V., Efremov R.G. (2010). Analysis of hydrophobic interactions of antagonists with the beta2-adrenergic receptor. SAR QSAR Environ Res 21 (1), 37–55 [+]

    The adrenergic receptors mediate a wide variety of physiological responses, including vasodilatation and vasoconstriction, heart rate modulation, and others. Beta-adrenergic antagonists ('beta-blockers') thus constitute a widely used class of drugs in cardiovascular medicine as well as in management of anxiety, migraine, and glaucoma. The importance of the hydrophobic effect has been evidenced for a wide range of beta-blocker properties. To better understand the role of the hydrophobic effect in recognition of beta-blockers by their receptor, we carried out a molecular docking study combined with an original approach to estimate receptor-ligand hydrophobic interactions. The proposed method is based on automatic detection of molecular fragments in ligands and the analysis of their interactions with receptors separately. A series of beta-blockers, based on phenylethanolamines and phenoxypropanolamines, were docked to the beta2-adrenoceptor binding site in the crystal structure. Hydrophobic complementarity between the ligand and the receptor was calculated using the PLATINUM web-server ( Based on the analysis of the hydrophobic match for molecular fragments of beta-blockers, we have developed a new scoring function which efficiently predicts dissociation constant (pKd) with strong correlations (r(2) approximately 0.8) with experimental data.

  35. Lesovoy D.M., Bocharov E.V., Lyukmanova E.N., Kosinsky Y.A., Shulepko M.A., Dolgikh D.A., Kirpichnikov M.P., Efremov R.G., Arseniev A.S. (2009). Specific membrane binding of neurotoxin II can facilitate its delivery to acetylcholine receptor. Biophys. J. 97 (7), 2089–97 [+]

    The action of three-finger snake alpha-neurotoxins at their targets, nicotinic acetylcholine receptors (nAChR), is widely studied because of its biological and pharmacological relevance. Most such studies deal only with ligands and receptor models; however, for many ligand/receptor systems the membrane environment may affect ligand binding. In this work we focused on binding of short-chain alpha-neurotoxin II (NTII) from Naja oxiana to the native-like lipid bilayer, and the possible role played by the membrane in delivering the toxin to nAChR. Experimental (NMR and mutagenesis) and molecular modeling (molecular-dynamics simulation) studies revealed a specific interaction of the toxin molecule with the phosphatidylserine headgroup of lipids, resulting in the proper topology of NTII on lipid bilayers favoring the attack of nAChR. Analysis of short-chain alpha-neurotoxins showed that most of them possess a high positive charge and sequence homology in the lipid-binding motif of NTII, implying that interaction with the membrane surrounding nAChR may be common for the toxin family.

  36. Polyansky A.A., Vassilevski A.A., Volynsky P.E., Vorontsova O.V., Samsonova O.V., Egorova N.S., Krylov N.A., Feofanov A.V., Arseniev A.S., Grishin E.V., Efremov R.G. (2009). N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins. FEBS Lett. 583 (14), 2425–8 [+]

    In silico structural analyses of sets of alpha-helical antimicrobial peptides (AMPs) are performed. Differences between hemolytic and non-hemolytic AMPs are revealed in organization of their N-terminal region. A parameter related to hydrophobicity of the N-terminal part is proposed as a measure of the peptide propensity to exhibit hemolytic and other unwanted cytotoxic activities. Based on the information acquired, a rational approach for selective removal of these properties in AMPs is suggested. A proof of concept is gained through engineering specific mutations that resulted in elimination of the hemolytic activity of AMPs (latarcins) while leaving the beneficial antimicrobial effect intact.

  37. Pyrkov T.V., Chugunov A.O., Krylov N.A., Nolde D.E., Efremov R.G. (2009). PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25 (9), 1201–2 [+]

    The PLATINUM (Protein-Ligand ATtractions Investigation NUMerically) web service is designed for analysis and visualization of hydrophobic/hydrophilic properties of biomolecules supplied as 3D-structures. Furthermore, PLATINUM provides a number of tools for quantitative characterization of the hydrophobic/hydrophilic match in biomolecular complexes e.g. in docking poses. These complement standard scoring functions. The calculations are based on the concept of empirical Molecular Hydrophobicity Potential (MHP). AVAILABILITY: The PLATINUM web tool as well as detailed documentation and tutorial are available free of charge for academic users at PLATINUM requires Java 5 or higher and Adobe Flash Player 9. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  38. Polyansky A.A., Volynsky P.E., Arseniev A.S., Efremov R.G. (2009). Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. The journal of physical chemistry. B 113 (4), 1107–19 [+]

    A detailed study of different factors determining interaction of a membrane-active peptide (a cell-penetrating peptide — penetratin) is presented. It concerns the role of conformational plasticity of the peptide in different membrane environment, as well as the ability of the peptide to form stable specific residue-residue interactions and make contacts with particular lipids.

  39. Polyansky A.A., Volynsky P.E., Arseniev A.S., Efremov R.G. (2009). Adaptation of a membrane-active peptide to heterogeneous environment. II. The role of mosaic nature of the membrane surface. The journal of physical chemistry. B 113 (4), 1120–6 [+]

    This study postulates the mosaic hydrophobic-hydrophilic organization of the lipid membrane surface. Special attention is given to the influence of such heterogeneous polar properties of the water-lipid interface on the binding mode of membrane-active agents (a case study of cell-penetrating peptide — penetratin).

  40. Pyrkov T.V., Priestle J.P., Jacoby E., Efremov R.G. (2009). Ligand-specific scoring functions: improved ranking of docking solutions. SAR QSAR Environ Res 19 (1-2), 91–9 [+]

    Molecular docking is a powerful computational method that has been widely used in many biomolecular studies to predict geometry of a protein-ligand complex. However, while its conformational search algorithms are usually able to generate correct conformation of a ligand in the binding site, the scoring methods often fail to discriminate it among many false variants. We propose to treat this problem by applying more precise ligand-specific scoring filters to re-rank docking solutions. In this way specific features of interactions between protein and different types of compounds can be implicitly taken into account. New scoring functions were constructed including hydrogen bonds, hydrophobic and hydrophilic complementarity terms. These scoring functions also discriminate ligands by the size of the molecule, the total hydrophobicity, and the number of peptide bonds for peptide ligands. Weighting coefficients of the scoring functions were adjusted using a training set of 60 protein-ligand complexes. The proposed method was then tested on the results of docking obtained for an additional 70 complexes. In both cases the success rate was 5-8% better compared to the standard functions implemented in popular docking software.

  41. Chugunov A.O., Efremov R.G. (2009). [Prediction of the spatial structure of proteins: emphasis on membrane targets]. Bioorg. Khim. 35 (6), 744–60 [+]

    Knowledge of the spatial structure of proteins is a prerequisite for both awareness of their functional mechanisms and the framework for rational drug discovery and design. Meanwhile, direct structural determination is often hampered or impractical due to the complexity, expensiveness, and limited capabilities of experimental techniques. These issues are especially pronounced for integral membrane proteins. On numerous occasions, the theoretical prediction of protein structures may facilitate the process by exploiting physical or empirical principles. This paper surveys modern techniques for the prediction of the spatial structure of proteins using computer algorithms, and the main emphasis is placed on the most "complex" targets - membrane proteins (MPs). The first part of the review describes de novo methods based on empirical physical principles; in the second part, a comparative modeling philosophy, which accounts for the structure of related proteins, is described. Special focus is made regarding pharmacologically relevant classes of G-coupled receptors, receptor tyrosine ki-nases, and other MPs. Algorithms for the assessment of the models quality and potential fields of application of computer models are discussed.

  42. Bocharov E.V., Volynsky P.E., Pavlov K.V., Efremov R.G., Arseniev A.S. (2009). Structure elucidation of dimeric transmembrane domains of bitopic proteins. Cell Adh Migr 4 (2), 284–98 [+]

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  43. Bocharov E.V., Mayzel M.L., Volynsky P.E., Goncharuk M.V., Ermolyuk Y.S., Schulga A.A., Artemenko E.O., Efremov R.G., Arseniev A.S. (2008). Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J. Biol. Chem. 283 (43), 29385–95 [+]

    Eph receptors are found in a wide variety of cells in developing and mature tissues and represent the largest family of receptor tyrosine kinases, regulating cell shape, movements, and attachment. The receptor tyrosine kinases conduct biochemical signals across plasma membrane via lateral dimerization in which their transmembrane domains play an important role. Structural-dynamic properties of the homodimeric transmembrane domain of the EphA1 receptor were investigated with the aid of solution NMR in lipid bicelles and molecular dynamics in explicit lipid bilayer. EphA1 transmembrane segments associate in a right-handed parallel alpha-helical bundle, region (544-569)(2), through the N-terminal glycine zipper motif A(550)X(3)G(554)X(3)G(558). Under acidic conditions, the N terminus of the transmembrane helix is stabilized by an N-capping box formed by the uncharged carboxyl group of Glu(547), whereas its deprotonation results in a rearrangement of hydrogen bonds, fractional unfolding of the helix, and a realignment of the helix-helix packing with appearance of additional minor dimer conformation utilizing seemingly the C-terminal GG4-like dimerization motif A(560)X(3)G(564). This can be interpreted as the ability of the EphA1 receptor to adjust its response to ligand binding according to extracellular pH. The dependence of the pK(a) value of Glu(547) and the dimer conformational equilibrium on the lipid head charge suggests that both local environment and membrane surface potential can modulate dimerization and activation of the receptor. This makes the EphA1 receptor unique among the Eph family, implying its possible physiological role as an "extracellular pH sensor," and can have relevant physiological implications.

  44. Farce A., Chugunov A.O., Logé C., Sabaouni A., Yous S., Dilly S., Renault N., Vergoten G., Efremov R.G., Lesieur D., Chavatte P. (2008). Homology modeling of MT1 and MT2 receptors. European journal of medicinal chemistry 43 (9), 1926–44 [+]

    Melatonin is a neurohormone synthesized and secreted mainly during the dark period of the circadian cycle by the pineal gland. It has already been proved to be involved in a number of chronobiological processes, most of them being mediated by its membranar receptors MT1 and MT2. Both are members of the GPCR class and, despite the interest they elicit, their 3D structure is still to be described. Models for both human MT1 and MT2 receptors have been constructed by homology modeling, using the X-ray structure of bovine rhodopsin as template. These models have been evaluated in terms of hydrophobic properties of the helices and refined to take into account the rearrangement of GPCRs necessary for their activation, thus leading to a putative activated model for each subtype.

  45. Dubovskii P.V., Volynsky P.E., Polyansky A.A., Karpunin D.V., Chupin V.V., Efremov R.G., Arseniev A.S. (2008). Three-dimensional structure/hydrophobicity of latarcins specifies their mode of membrane activity. Biochemistry 47 (11), 3525–33 [+]

    Latarcins, linear peptides from the Lachesana tarabaevi spider venom, exhibit a broad-spectrum antimicrobial activity, likely acting on the bacterial cytoplasmic membrane. We study their spatial structures and interaction with model membranes by a combination of experimental and theoretical methods to reveal the structure-activity relationship. In this work, a 26 amino acid peptide, Ltc1, was investigated. Its spatial structure in detergent micelles was determined by (1)H nuclear magnetic resonance (NMR) and refined by Monte Carlo simulations in an implicit water-octanol slab. The Ltc1 molecule was found to form a straight uninterrupted amphiphilic helix comprising 8-23 residues. A dye-leakage fluorescent assay and (31)P NMR spectroscopy established that the peptide does not induce the release of fluorescent marker nor deteriorate the bilayer structure of the membranes. The voltage-clamp technique showed that Ltc1 induces the current fluctuations through planar membranes when the sign of the applied potential coincides with the one across the bacterial inner membrane. This implies that Ltc1 acts on the membranes via a specific mechanism, which is different from the carpet mode demonstrated by another latarcin, Ltc2a, featuring a helix-hinge-helix structure with a hydrophobicity gradient along the peptide chain. In contrast, the hydrophobic surface of the Ltc1 helix is narrow-shaped and extends with no gradient along the axis. We have also disclosed a number of peptides, structurally homologous to Ltc1 and exhibiting similar membrane activity. This indicates that the hydrophobic pattern of the Ltc1 helix and related antimicrobial peptides specifies their activity mechanism. The latter assumes the formation of variable-sized lesions, which depend upon the potential across the membrane.

  46. Bocharov E.V., Mineev K.S., Volynsky P.E., Ermolyuk Y.S., Tkach E.N., Sobol A.G., Chupin V.V., Kirpichnikov M.P., Efremov R.G., Arseniev A.S. (2008). Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J. Biol. Chem. 283 (11), 6950–6 [+]

    Proper lateral dimerization of the transmembrane domains of receptor tyrosine kinases is required for biochemical signal transduction across the plasma membrane. The spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 embedded into lipid bicelles was obtained by solution NMR, followed by molecular dynamics relaxation in an explicit lipid bilayer. ErbB2 transmembrane segments associate in a right-handed alpha-helical bundle through the N-terminal tandem GG4-like motif Thr652-X3-Ser656-X3-Gly660, providing an explanation for the pathogenic power of some oncogenic mutations.

  47. Vereshaga Y.A., Volynsky P.E., Pustovalova J.E., Nolde D.E., Arseniev A.S., Efremov R.G. (2007). Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study. Proteins 69 (2), 309–25 [+]

    A computational technique for prediction of the spatial structure of transmembrane alpha-helical dimers is proposed. The approach is based on Monte Carlo simulations in the space of dihedral angles in the presence of the implicit membrane. Validity of the method was demonstrated with the example of transmembrane domain of mitochondrial pro-apoptotic protein BNIP3.

  48. Efremov R.G., Volynsky P.E., Nolde D.E., Vergoten G., Arseniev A.S. (2007). The membrane-proximal fusion domain of HIV-1 GP41 reveals sequence-specific and fine-tuning mechanism of membrane binding. J. Biomol. Struct. Dyn. 25 (2), 195–205 [+]

    The membrane interface-partitioning region preceding the transmembrane anchor of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope protein is one of the sites responsible for virus binding to its host cell membrane and subsequent fusion events. Here, we used molecular modeling techniques to assess membrane interactions, structure, and hydrophobic properties of the fusion-active peptide representing this region, several of its homologs from different HIV-1 strains, as well as a peptide - defective gp41 phenotype - unable to mediate cell-cell fusion and virus entry. It is shown that the wild-type peptides bind to the water-membrane interface in alpha-helical conformation, while the mutant adopts partly destabilized helix-break-helix structure on the membrane surface. The wild-type peptides reveal specific "tilted oblique-oriented" pattern of hydrophobicity on their surfaces - the property specific for fusion regions of other viruses. Fusion peptides penetrate into the membrane with their N-termini and reveal "fine-tuning" interactions with membrane and water environments: the shift of this balance (e.g., due to point mutations) may dramatically change the mode of membrane binding, and therefore, may cause loss of fusion activity. The modeling results agree well with experimental data and provide a strategy to delineate fusogenic regions in amino acid sequences of viral proteins.

  49. Chugunov A.O., Novoseletsky V.N., Nolde D.E., Arseniev A.S., Efremov R.G. (2007). Method to assess packing quality of transmembrane alpha-helices in proteins. 1. Parametrization using structural data. Journal of chemical information and modeling 47 (3), 1150–62 [+]

    Integral membrane proteins (MPs) are pharmaceutical targets of exceptional importance. Modern methods of three-dimensional protein structure determination often fail to supply the fast growing field of structure-based drug design with the requested MPs' structures. That is why computational modeling techniques gain a special importance for these objects. Among the principal difficulties limiting application of these methods is the low quality of the MPs' models built in silico. In this series of two papers we present a computational approach to the assessment of the packing "quality" of transmembrane (TM) alpha-helical domains in proteins. The method is based on the concept of protein environment classes, whereby each amino acid residue is described in terms of its environment polarity and accessibility to the membrane. In the first paper we analyze a nonredundant set of 26 TM alpha-helical domains and compute the residues' propensities to five predefined classes of membrane-protein environments. Here we evaluate the proposed approach only by various test sets, cross-validation protocols and ability of the method to delimit the crystal structure of visual rhodopsin, and a number of its erroneous theoretical models. More advanced validation of the method is given in the second article of this series. We assume that the developed "membrane score" method will be helpful in optimizing computer models of TM domains of MPs, especially G-protein coupled receptors.

  50. Chugunov A.O., Novoseletsky V.N., Nolde D.E., Arseniev A.S., Efremov R.G. (2007). Method to assess packing quality of transmembrane alpha-helices in proteins. 2. Validation by "correct vs misleading" test. Journal of chemical information and modeling 47 (3), 1163–70 [+]

    We describe a set of tests designed to check the ability of the new "membrane score" method (see the first paper of this series) to assess the packing quality of transmembrane (TM) alpha-helical domains in proteins. The following issues were addressed: (1) Whether there is a relation between the score (S(mem)) of a model and its closeness to the "nativelike" conformation? (2) Is it possible to recognize a correct model among misfolded and erroneous ones? (3) To what extent the score of a homology-built model is sensitive to errors in sequence alignment? To answer the first question, two test cases were considered: (i) Several models of bovine aquaporin-1 (target protein) were built on the structural templates provided by its homologs with known X-ray structure. (ii) Side chains in the spatial models of visual rhodopsin and cytochrome c oxidase were rebuilt based on the backbone scaffolds taken from their crystal structures, and the resulting models were iteratively fitted into the full-atom X-ray conformations. It was shown that the higher the S(mem) value of a model is, the lower its root-mean-square deviation is from the "correct" (crystal) structure of a target. Furthermore, the "membrane score" method successfully identifies the rhodopsin crystal structure in an ensemble of "rotamer-type" decoys, thus providing the way to optimize mutual orientations of alpha-helices in models of TM domains. Finally, being applied to a set of homology models of rhodopsin built on its crystal structure with systematically shifted alignment, the approach demonstrates a prominent ability to detect alignment errors. We therefore assume that the "membrane score" method will be helpful in optimization of in silico models of TM domains in proteins, especially those in GPCRs.

  51. Chugunov A.O., Novoseletsky V.N., Arseniev A.S., Efremov R.G. (2007). A novel method for packing quality assessment of transmembrane alpha-helical domains in proteins. Biochemistry Mosc. 72 (3), 293–300 [+]

    Here we present a novel method for assessment of packing quality for transmembrane (TM) domains of alpha-helical membrane proteins (MPs), based on analysis of available high-resolution experimental structures of MPs. The presented concept of protein-membrane environment classes permits quantitative description of packing characteristics in terms of membrane accessibility and polarity of the nearest protein groups. We demonstrate that the method allows identification of native-like conformations among the large set of theoretical MP models. The developed "membrane scoring function" will be of use for optimization of TM domain packing in theoretical models of MPs, first of all G-protein coupled receptors.

  52. Pyrkov T.V., Kosinsky Y.A., Arseniev A.S., Priestle J.P., Jacoby E., Efremov R.G. (2007). Complementarity of hydrophobic properties in ATP-protein binding: a new criterion to rank docking solutions. Proteins 66 (2), 388–98 [+]

    Analysis of X-ray structures of ATP-protein complexes was carried out to reveal the major determinants of adenin recognition by proteins. We demonstrated that hydrophobic contacts and stacking play the main role here. Efficient adenin-specific scoring function was proposed to filter the results of molecular docking.

  53. Efremov R.G., Chugunov A.O., Pyrkov T.V., Priestle J.P., Arseniev A.S., Jacoby E. (2007). Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 14 (4), 393–415 [+]

    Hydrophobic interactions play a key role in the folding and maintenance of the 3-dimensional structure of proteins, as well as in the binding of ligands (e.g. drugs) to protein targets. Therefore, quantitative assessment of spatial hydrophobic (lipophilic) properties of these molecules is indispensable for the development of efficient computational methods in drug design. One possible solution to the problem lies in application of a concept of the 3-dimensional molecular hydrophobicity potential (MHP). The formalism of MHP utilizes a set of atomic physicochemical parameters evaluated from octanol-water partition coefficients (log P) of numerous chemical compounds. It permits detailed assessment of the hydrophobic and/or hydrophilic properties of various parts of molecules and may be useful in analysis of protein-protein and protein-ligand interactions. This review surveys recent applications of MHP-based techniques to a number of biologically relevant tasks. Among them are: (i) Detailed assessment of hydrophobic/hydrophilic organization of proteins; (ii) Application of this data to the modeling of structure, dynamics, and function of globular and membrane proteins, membrane-active peptides, etc. (iii) Employment of the MHP-based criteria in docking simulations for ligands binding to receptors. It is demonstrated that the application of the MHP-based techniques in combination with other molecular modeling tools (e.g. Monte Carlo and molecular dynamics simulations, docking, etc.) permits significant improvement to the standard computational approaches, provides additional important insights into the intimate molecular mechanisms driving protein assembling in water and in biological membranes, and helps in the computer-aided drug discovery process.

  54. Chugunov A.O., Farce A., Chavatte P., Efremov R.G. (2006). Differences in binding sites of two melatonin receptors help to explain their selectivity to some melatonin analogs: a molecular modeling study. J. Biomol. Struct. Dyn. 24 (2), 91–107 [+]

    Numerous diseases have been linked to the malfunction of G-protein coupled receptors (GPCRs). Their adequate treatment requires rational design of new high-affinity and high-selectivity drugs targeting these receptors. In this work, we report three-dimensional models of the human MT(1) and MT(2) melatonin receptors, members of the GPCR family. The models are based on the X-ray structure of bovine rhodopsin. The computational approach employs an original procedure for optimization of receptor-ligand structures. It includes rotation of one of the transmembrane alpha-helices around its axis with simultaneous assessment of quality of the resulting complexes according to a number of criteria we have developed for this purpose. The optimal geometry of the receptor-ligand binding is selected based on the analysis of complementarity of hydrophobic/hydrophilic properties between the ligand and its protein environment in the binding site. The elaborated "optimized" models are employed to explore the details of protein-ligand interactions for melatonin and a number of its analogs with known affinity to MT(1) and MT(2) receptors. The models permit rationalization of experimental data, including those that were not used in model building. The perspectives opened by the constructed models and by the optimization procedure in the design of new drugs are discussed.

  55. Volynsky P.E., Bocharov E.V., Nolde D.E., Vereshaga Y.A., Mayzel M.L., Mineev K.S., Mineeva E.V., Pustovalova Yu.E., Gagnidze I.A., Efremov R.G., Arseniev A.S. (2006). Solution of the Spatial Structure of Dimeric Transmembrane Domains of Proteins by Heteronuclear NMR Spectroscopy and Molecular Modeling. Biophysics 51 (S1), S23–S27 [+]

    Membrane proteins play an important role in various biological processes. An approach combining
    NMR spectroscopy with molecular modeling was used to study the spatial structure and intramolecular dynamics of protein transmembrane domains consisting of two interacting α-helices. The approach was tested with model transmembrane domains and yielded detailed atomic-level data on the protein–protein and protein–lipid interactions.

  56. Polyansky A.A., Volynsky P.E., Nolde D.E., Arseniev A.S., Efremov R.G. (2005). Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations. The journal of physical chemistry. B 109 (31), 15052–9 [+]

    Anionic unsaturated lipid bilayers represent suitable model systems that mimic real cell membranes: they are fluid and possess a negative surface charge. Understanding of detailed molecular organization of water-lipid interfaces in such systems may provide an important insight into the mechanisms of proteins' binding to membranes. Molecular dynamics (MD) of full-atom hydrated lipid bilayers is one of the most powerful tools to address this problem in silico. Unfortunately, wide application of computational methods for such systems is limited by serious technical problems. They are mainly related to correct treatment of long-range electrostatic effects. In this study a physically reliable model of an anionic unsaturated bilayer of 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) was elaborated and subjected to long-term MD simulations. Electrostatic interactions were treated with two different algorithms: spherical cutoff function and particle-mesh Ewald summation (PME). To understand the role of lipid charge in the system behavior, similar calculations were also carried out for zwitterionic bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). It was shown that, for the charged DOPS bilayer, the PME protocol performs much better than the cutoff scheme. In the last case a number of artifacts in the structural organization of the bilayer were observed. All of them were attributed to inadequate treatment of electrostatic interactions of lipid headgroups with counterions. Electrostatic properties, along with structural and dynamic parameters, of both lipid bilayers were investigated. Comparative analysis of the MD data reveals that the water-lipid interface of the DOPC bilayer is looser than that for DOPS. This makes possible deeper penetration of water molecules inside the zwitterionic (DOPC) bilayer, where they strongly interact with carbonyls of lipids. This can lead to thickening of the membrane interface in zwitterionic as compared to negatively charged bilayers.

  57. Dioubankova N.N., Malakhov A.D., Stetsenko D.A., Gait M.J., Volynsky P.E., Efremov R.G., Korshun V.A. (2003). Pyrenemethyl ara-uridine-2'-carbamate: a strong interstrand excimer in the major groove of a DNA duplex. Chembiochem 4 (9), 841–7 [+]

    The synthesis of new nucleoside derivatives, ara-uridine-2'-carbamates, and their incorporation into synthetic DNA oligomers is described. The modification directs ligands into the major groove of duplex DNA and somewhat destabilizes the duplexes of modified oligonucleotides with complementary DNA or RNA. In the case of pyrenemethyl carbamate modification in DNA-DNA duplexes, the destabilization is considerably reduced. The pyrenemethyl derivative also shows remarkable spectral properties: a "reversed" absorbance change for pyrene at 350 nm in the course of denaturation of the DNA duplex, as compared to the change seen in the nucleotide absorbance at 260 nm. This derivatization also causes pronounced sequence-dependent excimer formation in the major groove.

  58. Efremov R.G., Nolde D.E., Vergoten G., Arseniev A.S. (1999). A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation. Biophys. J. 76 (5), 2448–59 [+]

    A novel model of implicit membrane was proposed. The efficiency of the model in prediction of alpha-helical content of several homopolypeptides (poly-Leu, poly-Val, poly-Leu, poly-Gly) was proofed by series of Monte-Carlo simulations.

  59. Efremov R.G., Vergoten G. (1995). The hydrophobic nature of membrane-spanning alpha-helices as revealed by Monte Carlo simulations and molecular hydrophobicity potential analysis. J. Phys. Chem. 99 (26), 10658–10666 [+]

    Spatial hydrophobic organization of alpha-helical transmembrane segments of several proteins was investigated using two independent approaches: molecular hydrophobicity potential (MHP) calculations and Monte Carlo simulations in explicit solvents of different polarity. MHP-approach proved to be very efficient in quantitative assessment and mapping of hydrophobic/hydrophilic properties of transmembrane segments of proteins.