Marija V. Astapova

Ph.D. (biological sciences)


E-mail: ast-mariya@yandex.ru

Selected publications

  1. Lyukmanova E.N., Shulepko M.A., Kudryavtsev D., Bychkov M.L., Kulbatskii D.S., Kasheverov I.E., Astapova M.V., Feofanov A.V., Thomsen M.S., Mikkelsen J.D., Shenkarev Z.O., Tsetlin V.I., Dolgikh D.A., Kirpichnikov M.P. (2016). Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLoS ONE 11 (2), e0149733 [+]

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,-non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that the antiproliferative activity of SLURP-1 is related to 'metabotropic' signaling pathway through α7-nAChR, that activates intracellular signaling cascades without opening the receptor channel.

    ID:1420
  2. Sharonov G.V., Bocharov E.V., Kolosov P.M., Astapova M.V., Arseniev A.S., Feofanov A.V. (2014). Point mutations in dimerization motifs of the transmembrane domain stabilize active or inactive state of the EphA2 receptor tyrosine kinase. J. Biol. Chem. 289 (21), 14955–64 [+]

    The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L(535)X3G(539)X2A(542)X3V(546)X2L(549) rather than through the alternative glycine zipper motif A(536)X3G(540)X3G(544) (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr(588) and/or Tyr(594)) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.

    ID:1139
  3. Nekrasova O.V., Sharonov G.V., Tikhonov R.V., Kolosov P.M., Astapova M.V., Yakimov S.A., Tagvey A.I., Korchagina A.A., Bocharova O.V., Wulfson A.N., Feofanov A.V., Kirpichnikov M.P. (2012). Receptor-binding domain of ephrin-A1: production in bacterial expression system and activity. Biochemistry Mosc. 77 (12), 1387–94 [+]

    Eph receptor tyrosine kinases and their ligands, the ephrins, perform an important regulatory function in tissue organization, as well as participate in malignant transformation of cells. Ephrin-A1, a ligand of A class Eph receptors, is a modulator of tumor growth and progression, and the mechanism of its action needs detailed investigation. Here we report on the development of a system for bacterial expression of an ephrin-A1 receptor-binding domain (eA1), a procedure for its purification, and its renaturation with final yield of 50 mg/liter of culture. Functional activity of eA1 was confirmed by immunoblotting, laser scanning confocal microscopy, and flow cytometry. It is shown that monomeric non-glycosylated receptor-binding domain of ephrin-A1 is able to activate cellular EphA2 receptors, stimulating their phosphorylation. Ligand eA1 can be used to study the features of ephrin-A1 interactions with different A class Eph receptors. The created expression cassette is suitable for the development of ligands with increased activity and selectivity and experimental systems for the delivery of cytotoxins into tumor cells that overexpress EphA2 or other class A Eph receptors.

    ID:1479
  4. Feofanov A.V., Sharonov G.V., Astapova M.V., Rodionov D.I., Utkin Y.N., Arseniev A.S. (2005). Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem. J. 390 (Pt 1), 11–8 [+]

    Cytotoxins from cobra venom are known to manifest cytotoxicity in various cell types. It is widely accepted that the plasma membrane is a target of cytotoxins, but the mechanism of their action remains obscure. Using the confocal spectral imaging technique, we show for the first time that cytotoxins from cobra venom penetrate readily into living cancer cells and accumulate markedly in lysosomes. Cytotoxins CT1 and CT2 from Naja oxiana, CT3 from Naja kaouthia and CT1 from Naja haje are demonstrated to possess this property with respect to human lung adenocarcinoma A549 and promyelocytic leukaemia HL60 cells. Immobilized plasma membrane binding accompanies the internalization of CT3 from Naja kaouthia in the HL60 cells, but it is very weak for other cytotoxins. Detectable membrane binding is not a property of any of the cytotoxins tested in A549 cells. The kinetics and concentration-dependence of cytotoxin accumulation in lysosomes correlate well with their cytotoxic effects. On the basis of the results obtained, we propose that lysosomes are a primary target of the lytic action of cytotoxins. Plasma membrane permeabilization seems to be a downstream event relative to lysosome rupture. Direct damage to the plasma membrane may be a complementary mechanism, but its relative contribution to the cytotoxic action depends on the cytotoxin structure and cell type.

    ID:93
  5. Sharonov G.V., Feofanov A.V., Bocharova O.V., Astapova M.V., Dedukhova V.I., Chernyak B.V., Dolgikh D.A., Arseniev A.S., Skulachev V.P., Kirpichnikov M.P. (2005). Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis 10 (4), 797–808 [+]

    A non-traumatic electroporation procedure was developed to load exogenous cytochrome c into the cytoplasm and to study the apoptotic effect of cytochrome c, its K72-substitued mutants and "yeast --> horse" hybrid cytochrome c in living WEHI-3 cells. The minimum apoptosis-activating intracellular concentration of horse heart cytochrome c was estimated to be 2.7 +/- 0.5 microM (47 +/- 9 fg/cell). The equieffective concentrations of the K72A-, K72E- and K72L-substituted mutants of cytochrome c were five-, 15- and 70-fold higher. The "yeast --> horse" hybrid created by introducing S2D, K4E, A7K, T8K, and K11V substitutions (horse protein numbering) and deleting five N-terminal residues in yeast cytochrome c did not evoke apoptotic activity in mammalian cells. The apoptotic function of cytochrome c was abolished by the K72W substitution. The K72W-substituted cytochrome c possesses reduced affinity to the apoptotic protease activating factor-1 (Apaf-1) and forms an inactive complex. This mutant is competent as a respiratory-chain electron carrier and well suited for knock-in studies of cytochrome c-mediated apoptosis.

    ID:94
  6. Osipov A.V., Astapova M.V., Tsetlin V.I., Utkin Y.N. (2004). The first representative of glycosylated three-fingered toxins. Cytotoxin from the Naja kaouthia cobra venom. Eur. J. Biochem. 271 (10), 2018–27 [+]

    There are different glycosylated proteins in snake venoms, but no glycosylated representatives of a large family of three-fingered toxins have previously been detected. A new glycoprotein was isolated from the venom of the Thai cobra Naja kaouthia. MALDI MS of the glycoprotein contained an array of peaks in the range from approximately 8900 to approximately 9400 Da indicating its microheterogeneity. Carbohydrate analysis showed the presence of mannose, galactose, N-acetylglucosamine, fucose and neuraminic acid. The N-terminal sequence of the glycoprotein was identical to that of cytotoxin 3 (CX3) from N. kaouthia, and CD spectra of the glycoprotein and CX3 were almost the same. Cleavage of a glycan moiety by N-glycosidase F gave a protein of molecular mass practically coinciding with that of CX3. MALDI MS of the tryptic digest of reduced glycoprotein S-pyridylethylated at cysteine residues, contained peaks corresponding to all tryptic fragments of CX3, with the exception of fragment 24-30. The peak corresponding to this peptide appeared in the mass-spectrum of similarly treated deglycosylated glycoprotein. These data show that the potential N-glycosylation site at Asn29 in CX3 is utilized for glycan attachment and that the glycoprotein is glycosylated CX3. In vivo toxicity of the glycoprotein to the cricket Gryllus assimilis was twofold lower than that of CX3. The cytotoxic activity of the glycoprotein towards HL60 cells was about two orders of magnitude lower than that of CX3, but could be made equal to the CX3 cytotoxicity by deglycosylation. Thus for the first time we have isolated a glycosylated three-fingered snake venom toxin wherein glycosylation appears to modulate its biological activity.

    ID:192
  7. Kostanyan I.A., Astapova M.V., Starovoytova E.V., Dranitsina S.M., Lipkin V.M. (1994). A new human leukemia cell 8.2 kDa differentiation factor: isolation and primary structure. FEBS Lett. 356 (2-3), 327–9 [+]

    A new 8.2 kDa differentiation factor has been purified to homogeneity from the cultural media of human myelogenous HL-60 leukemia cells induced by retinoic acid. cDNA clones encoding this factor were isolated from a cDNA library prepared from HL-60 differentiated cells and their nucleotide sequence has been determined. The deduced amino acid sequence of the differentiation factor molecule consists of 54 amino acid residues. The protein is shown to be glycosylated. It was shown by Northern blot experiments that the level of poly(A)+ RNA with a length of 450 nucleotides was higher in differentiated cells than in non-differentiated cells.

    ID:49