Лаборатория биомолекулярной ЯМР-спектроскопии

Лаборатория биомолекулярной ЯМР-спектроскопии

Отдел структурной биологии

Руководитель: Арсеньев Александр Сергеевич, д. х. н., профессор
aars@nmr.ru+7(495)330-59-29

www.nmr.ru

ЯМР, ЯМР спектроскопия, мембранные и мембрано-активные белки и пептиды, ионные каналы, G-белок сопряжённые рецепторы, спираль-спиральные взаимодействия, мембрано-моделирующие среды

Лаборатория исследует структуру белков и пептидов. Для этого используют один из важнейших современных методов – спектроскопию ядерного магнитного резонанса (ЯМР).

Сотрудники лаборатории занимаются исследованиями мембранных белков, таких, как рецепторные nирозинкиназы, ионные каналы, toll-подобные рецепторы, предшественник бета-амилоида, GPCR-ы и другие. Ведутся работы по изучению свойств природных люцеферинов, механизмов действия блокаторов болевых рецепторов, вирусных белков, необходимых для заражения клетки, а также механизмов лиганд-рецепторных взаимодействий.

Большая часть исследований напрямую связана с практическими вопросами: поиском противораковых мишеней, причин возникновения болезни Альцгеймера, созданием эффективных болеутоляющих, специфичных диагностических систем и др.

fig_web.png

В распоряжении лаборатории находятся самые современные приборы фирмы Bruker: 600, 700 и 800 MHz, оборудованные криодатчиками, имеется твердотельный датчик с вращением под «магическим» углом.  Кроме того, в лаборатории есть необходимое оборудование и технологии для бактериального и бесклеточного синтеза рекомбинантных белков и их физико-химической характеризации. На их основе были разработаны методы получения изотопно-меченых и селективно-меченых белков.

p7012284.jpg p7012283.jpg p4031729.jpg p4031732.jpg

Все это позволяет успешно решать сложнейшие задачи на грани и за гранью возможностей современной структурной биологии.

Оборудование лаборатории является частью центра коллективного пользования ИБХ РАН, поэтому существует возможность выполнить анализ образцов высокой сложности методами ЯМР-спектроскопии на коммерческой основе.

Лаборатория имеет богатую историю. В 1965 году ее основал Владимир Федорович Быстров, член-корреспондент Академии наук СССР. Он одним из первых в мире начал заниматься структурными исследованиями белков и пептидов в растворе методом ЯМР-спектроскопии и создал крупнейшую в Советском Союзе научную школу. В 1990 г. лабораторию возглавил его ученик, профессор Александр Сергеевич Арсеньев.

По сей день лаборатория продолжает начинания Быстрова и является одной из ведущих мировых школ ЯМР в мире. Каждый год она выпускает новых высококвалифицированных специалистов и кандидатов наук, способных решать самые сложные задачи с использованием ЯМР-спектроскопии.

За долгие годы работы у лаборатории появилось множество друзей и партнеров. Среди них – лаборатория нобелевского лауреата Курта Вютриха, одна из сильнейших в мире ЯМР-лабораторий профессора Герхарда Вагнера, вторая по величине в мире фармацевтическая компания «Новартис» и другие.

Сегодня наша лаборатория – это очень дружный коллектив, который ставит перед собой самые амбициозные задачи и готов на любое интересное сотрудничество!

2012 год: Вверху (слева направо) Урбан АС, Парамонов АС, Гончарук МВ, Нольде ДЕ, Надеждин КД, Сливинский ВА, Нольде СБ, Дубовский ПВ, Бочарова ОВ, Бочаров ЭВ, Баринов НА, Чупин ВВ, Шенкарев ЗО. Внизу: Иванов ПЮ, Кузьмичев ПК, Гончарук СА, Лесовой ДМ, Арсеньев АС, Минеев КС, Мышкин МЮ, Дубинный МА. 

I. Биологические исследования

Установление структуры биомолекул в контексте присущих им взаимодействий:

  • Пептиды защитной системы растений: гевеин-подобные и их взаимодействия с гликополимерами клеточной стенки грибов (хитином), липид-переносящий белок и его взаимодействие с фосфолипидами, ингибиторы трипсина и других протеаз
  • Гомо- и гетеродимеразиция трансмембранных спиралей битопных мембранных белков (рецепторы тирозинкиназ)
  • G-белок сопряжённые рецепторы
  • Пептидные антибиотики и изучение механизма их действия
  • Структура и межмолекулярные взаимодействия трансмембранных фрагментов "amyloid precursor protein" (APP), участвующего в развитии болезни Альцгеймера
  • Мембраноактивные пептиды (токсины из яда змей, насекомых, фрагменты вирусных белков и др.) и их взаимодействия с биологическими мембранами.

II. Методические разработки для ЯМР- и ЭПР-спектроскопии биомолекул

  • Разработка методов получения изотопно-меченых мембранных пептидов и белков
  • Разработка новых мембрано-моделирующих сред для исследования мембранных белков;
  • Программное обеспечение для анализа:
  1. Гетероядерных (13C,15N) ЯМР-данных белков и пептидов
  2. Диффузии макромолекул, формы линии 31Р-ЯМР (2Н-ЯМР) широких линий фосфолипидных дисперсий
  3. Декомпозиции двухкомпонентных спектров ЭПР.

Первым весомым вкладом в копилку мирового опыта исследования структуры пептидов и белков методом ЯМР стала работа коолектива под руководством В.Ф. Быстрова,  устанавливающая взаимосвязь между константой спин-спинового взаимодействия протонов H-NCa-H и двугранным углом Q (Tetrahedron, 1973). Найденная зависимость получила название: уравнение Быстрова.

Исследования не ограничивались пептидами и белками. Прорыв был сделан и в мембранологии. Владимир Федорович  совместно с  лабораторией химии липидов ИБХ (руководитель –  член-корреспондент АН СССР Бергельсон Л.Д.) нашёл способ измерения проницаемости фосфолипдных мембран с помощью дифференции их внешних и внутренних поверхностей с использованием парамагнитных ионов (Chemistry and Physics Lipids, 1971).

После отработки методологии последовательного отнесения сигналов в спектрах ЯМР, сконцентрированной в Швейцарии, в лаборатории проф. К. Вютриха, в которой принимал участие стажировавшийся там А.С. Арсеньев, несомненным успехом лаборатории Быстрова стали биологические приложения метода ЯМР.  

В 1985 установили детальную пространственную структуру грамицидинового канала в комплексе с одновалентными катионами, выяснили механизм блокирования канала двухвалентными катионами, установили взаимосвязь дисперсности ионной проводимости и внутримолекулярной динамики, механизм открывания и закрывания канала. Работа, посвящённая структуре грамицидоновго канала (FEBS Letters, 1985), до сих пор является одной из самых цитируемых работ лаборатории.

С тех пор "димерная" тема стала визитной карточкой Лаборатории. Как оказалось, многие биологические процессы сопровождаются димеризацией задействованных в них молекул полипептидов. В частности, именно димеризацией транс-мембранных доменов тирозинкиназных рецепторов сопровождается их активация (см. обзор, посвящённый этому направлению (Cell Adhesion and Migration, 2010)), нарушение димеризации транс-мембранного домена белка АРР отвечает за развитие болезни Альцгеймера человека (FEBS Letters, 2012), формирование транс-мембранных бета-шпилечных димеров ареницином лежит в основе антимикробной активности этого пептида (Biochemistry, 2011).

В настоящее время лаборатория располагает собственной базой для получения изотопно-меченых рекомбинантных белков генно-инженерными методами, современными ЯМР-спектрометрами и программным обеспечением для обработки и анализа получаемых спектров. Например, несомненным авторитетом среди ЯМР-спектроскопистов пользуется программа DASHA для анализа релаксационных данных биомолекул, разработанная под руководством проф. А.С. Арсеньева (Applied Magnetic Resonance. 1995). Постоянный приток молодых сотрудников в лабораторию и её популярность среди студентов МФТИ позволяют надеяться, что список достижений лаборатории будет пополняться.

Ф.И.О.ДолжностьКонтакты
Арсеньев Александр Сергеевич, д. х. н., профессорзав. лаб.aars@nmr.ru+7(495)330-59-29
Бочаров Эдуард Валерьевич, к. х. н.с.н.с.bon@nmr.ru+7(495)330-74-83#113
Бочарова Ольга Владимировна, к. м. н.с.н.с.o.bocharova@gmail.com+7(495)335-27-33#127
Гончарук Сергей Александрович, к. б. н.с.н.с.ms.goncharuk@gmail.com+7(926)5671540
Дубинный Максим Анатольевич, к. ф.-м. н.с.н.с.maxim@nmr.ru+7(495)335-27-33#114
Минеев Константин Сергеевич, к. ф.-м. н.с.н.с.mineev@nmr.ru+7(495)330-74-83#116
Надеждин Кирилл Дмитриевич, к. ф.-м. н.с.н.с.kirill@nmr.ru+7(495)330-74-83#113
Гончарук Марина Валерьевна, к. б. н.н.с.m.s.goncharuk@gmail.com+7(495)335-27-33#127, +7(495)330-74-83#127
Лесовой Дмитрий Михайлович, к. ф.-м. н.н.с.dima_l@nmr.ru+7(495)330-74-83#154
Артемьева Лилия Евгеньевнам.н.с.lilko@list.ru
Кот Эрик Федоровичм.н.с.kot@phystech.edu
Лушпа Владислав Александровичм.н.с.lushpa@phystech.edu
Нольде Светлана Борисовнам.н.с.sveta@nmr.ru+7(495)330-74-83#159
Урбан Анатолий Сергеевичм.н.с.anatoly.urban@gmail.com
Бессмертный Александр Игоревичстуд.albes97@yandex.ru
Васильева Екатерина Владимировнастуд.anflez001@bk.ru
Корнилов Фёдор Дмитриевичстуд.fed7884@gmail.com
Мотов Владислав Вячеславовичстуд.motov.vv@phystech.edu
Талызина Ирина Александровнастуд.irina.talyzina@yahoo.com
Шабалкина Александра Валерьевнастуд.shabalkina.av@phystech.edu
Примак Александра Леонидовнатех.-лаб.
Тагирова Миляуша Кавыевнатех.-лаб.
Бершацкий Ярослав Витальевичинж.-иссл.

Ранее здесь работали:

Чупин Владимир Викторович, д. х. н., профессорв.н.с.vvchupin@gmail.com
Балашова Тамара Андреевна, к. х. н.с.н.с.taba@nmr.ru
Масленников Иннокентий Вячеславович, к. ф.-м. н.с.н.с.maslennikov@salk.edu
Шенкарёв Захар Олегович, д. ф.-м. н.с.н.с.zakhar-shenkarev@yandex.ru
Дубовский Пётр Викторович, к. х. н.н.с.peter@nmr.ru
Парамонов Александр Сергеевич, к. ф.-м. н.н.с.apar@nmr.ru
Кузьмичёв Павел Константиновичм.н.с.ibch.fizteh@gmail.com
Пустовалова Юлия Евгеньевна, к. ф.-м. н.м.н.с.jul@nmr.ru
Трунов Кирилл Игоревичасп.kirill.trunov@gmail.com
Голубев Денис Игоревичтех.-лаб.ibch.nmr@gmail.com
Петрова Галина Фёдоровнатех.-лаб.
Мышкин Михаил Юрьевичинж.-иссл.mikhail.myshkin@phystech.edu
Брагин Павел Евгеньевичинженерbragin@nmr.ru
Сливинский Владимир Александровичинженерsva@nmr.ru

Все публикации (показать избранные)

Загружаются...

Арсеньев Александр Сергеевич

  • Москва, ул. Миклухо-Маклая, 16/10 — На карте
  • ИБХ РАН, корп. , комн.
  • Эл. почта: aars@nmr.ru

Структурные основы влияния патогенных мутаций в трансмембранных доменах на функционирование клеточных рецепторов

Совместно с: Лаборатория моделирования биомолекулярных систем

Мутации в мембранных белках часто ассоциированы с патогенными процессами в организме человека, в том числе с нейродегенеративными и онкогенными заболеваниями. При помощи белковой инженерии, ЯМР-спектроскопии и компьютерного моделирования раскрыт простой молекулярный механизм развития болезни Альцгеймера (AD), связанный с влиянием семейной «Австралийской» мутации L723P на структурно-динамические свойства трансмембранного (ТМ) сегмента белка-предшественника β-амилоида (АРР). Мутация приводит к анормальному расщеплению белка АРР ферментами-секретазами и интенсивному накоплению патогенных форм β-амилоида вокруг нейронов. Примечательно, что возрастное развитие болезни можно объяснить схожими механизмами, где вместо мутации будут действовать, например, окислительный стресс или определенный липидный состав мембран нейронов, включая избыток холестерина.

Ранее для проектирования пептидов с заданной функцией мы предложили использовать удобный структурный каркас, а именно α-гарпининовую укладку, характерную для токсинов из яда скорпионов и защитных пептидов растений. Теперь использование разработанного нами метода белковой топографии позволило существенно улучшить свойства искусственного α-гарпинина, блокирующего калиевые каналы Kv1.3, важную фармакологическую мишень. Совместное использование двух подходов ‑ «скаффолд-инженерии» и белковой топографии ‑ позволяет получать оптимизированные лиганды ионных каналов.

Расшифрованы молекулярные основы биолюминесценции Odontosyllis

Совместно с: Лаборатория лиганд-рецепторных взаимодействий,  Лаборатория химии метаболических путей

Впервые определены структуры трех ключевых низкомолекулярных компонентов биолюминесцентной системы морских полихет Odontosyllis undecimdonta: люциферина, оксилюциферина (Green), а также продукта неспецифического окисления люциферина (Pink) кислородом. Установлено, что эти соединения имеют крайне необычный гетероциклический скелет, содержащий три атома серы с различными степенями окисления. Предложены химические механизмы ферментативного (люминесцентного) и неферментативного оксиления люциферина Odontosyllis. Более того, выявлено, что оксилюциферин Odontosyllis является единственным из известных для морских люминесцентных организмов первичным эмиттером зеленого света.

Публикации

  1. Kotlobay AA, Dubinnyi MA, Purtov KV, Guglya EB, Rodionova NS, Petushkov VN, Bolt YV, Kublitski VS, Kaskova ZM, Ziganshin RH, Nelyubina YV, Dorovatovskii PV, Eliseev IE, Branchini BR, Bourenkov G, Ivanov IA, Oba Y, Yampolsky IV, Tsarkova AS (2019). Bioluminescence chemistry of fireworm Odontosyllis. Proc Natl Acad Sci U S A 116 (38), 18911–18916

Разработка метода оценки мембраноподобных сред и поиск новых составов для исследования мембранных белков

Совместно с: Лаборатория моделирования биомолекулярных систем

С использованием спектроскопии ЯМР был разработан новый метод оценки корректности структуры мембраноподобных сред на основе бицелл, основанный на детекции фазовых переходов липидов в бицеллах, а также изучены свойства фазового перехода  в зависимости от параметров изучаемых смесей. В серии работ были исследованы характеристики множества различных составов бицелл, найдены среды, способные имитировать различные аспекты поведения клеточной мембраны. Разработаны новые составы, с помощью которых можно изучать мембранные белки с большими водорастворимыми доменами и отслеживать влияние состава мембраны на поведение мембранного белка. 

Предложен молекулярный механизм передачи сигнала рецептором hGHR

Совместно с: Лаборатория моделирования биомолекулярных систем

На основе структурно-динамических ЯМР-исследований детально описаны аллостерические конформационные перестройки и межмолекулярные взаимодействия трансмембранного домена рецептора гормона роста человека, hGHR, инициированные связыванием лиганда. В результате был предложен молекулярный механизм передачи сигнала рецептором hGHR.

Установлен молекулярный механизм конститутивной активации рецепторной тирозин-киназы PDGFRA, опосредованной траснмембранным доменом

Совместно с: Лаборатория моделирования биомолекулярных систем

В сотрудничестве с экспериментальными группами проф. Ж.-Б. Демолина (Институт Де Дюва, Брюссель Бельгия) и проф. А. С. Арсеньева (ИБХ РАН) исследован молекулярный механизм активации рецепторных тирозинкиназ, опосредованной трансмембранным (ТМ) доменом,  на примере рецептора фактора роста тромбоцитов (PDGFRA) и его онкогенного мутанта V536E. Разработанная уникальная вычислительная платформа позволила просканировать все возможные позиции в ТМ-спирали рецептора и идентифицировать функциональные мутации для дикого типа и онкогенного мутанта, а также выявить взаимосвязь между активностью рецептора и димеризацией ТМ доменов по нескольким доступным участкам взаимодействия (интерфейсам). Найдены и протестированы на культуре клеток новая активирующая мутация I537D для дикого типа, а также мутация S541G, элиминирующая повышенную конститутивную активность онкогенного мутанта V536E. 

Публикации

  1. Polyansky AA, Bocharov EV, Velghe AI, Kuznetsov AS, Bocharova OV, Urban AS, Arseniev AS, Zagrovic B, Demoulin JB, Efremov RG (2019). Atomistic mechanism of the constitutive activation of PDGFRA via its transmembrane domain. BIOCHIM BIOPHYS ACTA 1863 (1), 82–95

Авторы: Апарин И.О., Проскурин Г.В., Прохоренко И.А., Коршун В.А. (Лаборатория молекулярного дизайна и синтеза), Шенкарев З.О. (Группа структурной биологии ионных каналов), Парамонов А.С. (Лаборатория биомолекулярной ЯМР-спектроскопии), Рогожин Е.А. (Лаборатория нейрорецепторов и нейрорегуляторов).

Установлена структура двух компонентов липопептидного антибиотика кристалломицина из образца, полученного 60 лет назад. Установлена идентичность компонентов кристалломицина двум компонентам аспартоцина, структура которых была выяснена недавно. Антибиотик проявляет Ca2+-зависимую активность к грам-положительным бактериям. С помощью ЯМР исследованы конформации кристалломицина 2 в растворе.

В составе пептидного антибиотика INA-5812 обнаружена аминокислота 4-хлор-L-кинуренин, ранее встречавшаяся в природных продуктах лишь однажды. Нами впервые описаны флуоресцентные свойства 4-хлор-L-кинуренина и его использование в качестве донора энергии для возбуждения других флуорофоров.

С использованием различных методов 2D ЯМР установлена структура двух новых макролидных антибиотиков, астолидов А и Б. Молекулы астолидов одновременно содержат в качестве агликонов мембрано-активный полиольный макролид и редокс-активный нафтохиноновый остаток. Наличие гидроксильной группы в положении 18 принципиальным образом меняет спектр биологической активности по сравнению с известными аналогами – возрастает противогрибковая активность и снижается цитотоксичность.

Публикации

  1. Alferova VA, Shuvalov MV, Suchkova TA, Proskurin GV, Aparin IO, Rogozhin EA, Novikov RA, Solyev PN, Chistov AA, Ustinov AV, Tyurin AP, Korshun VA (2018). 4-Chloro-l-kynurenine as fluorescent amino acid in natural peptides. Amino Acids 50 (12), 1697–1705
  2. Alferova VA, Novikov RA, Bychkova OP, Rogozhin EA, Shuvalov MV, Prokhorenko IA, Sadykova VS, Kulko AB, Dezhenkova LG, Stepashkina EA, Efremov MA, Sineva ON, Kudryakova GK, Peregudov AS, Solyev PN, Tkachev YV, Fedorova GB, Terekhova LP, Tyurin AP, Trenin AS, Korshun VA (2018). Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron 74 (52), 7442–7449
  3. Jiang ZK, Tuo L, Huang DL, Osterman IA, Tyurin AP, Liu SW, Lukyanov DA, Sergiev PV, Dontsova OA, Korshun VA, Li FN, Sun CH (2018). Diversity, novelty, and antimicrobial activity of endophytic actinobacteria from mangrove plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front Microbiol 9 (MAY), 868
  4. Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Malanicheva IA, Grammatikova NE, Solyev PN, Liu S, Sun C, Prokhorenko IA, Efimenko TA, Terekhova LP, Efremenkova OV, Shenkarev ZO, Korshun VA (2018). Crystallomycin revisited after 60 years: Aspartocins B and C. Medchemcomm 9 (4), 667–675

В лекарственном растении Laurus nobilis обнаружен протон-независимый активатор кислото-чувствительных каналов ASIC3 с необычными фармакологическими свойствами.

Совместно с: Лаборатория биофармацевтики,  Лаборатория моделирования биомолекулярных систем,  Лаборатория нейрорецепторов и нейрорегуляторов

Целенаправленный поиск новых лигандов к ионным каналам семейства ASIC привел к обнаружению в листьях благородного лавра алкалоида линдолдхамин, который может активировать канал ASIC3 при физиологических значениях pH. Было продемонстрировано, что закисление внеклеточной среды, которое в норме приводит к активации ионного канала, не является необходимым условием для открытия, как человеческой, так и крысиной изоформы ASIC3 канала. Электрофизиологические исследования на гетерологически экспрессированных ионных каналах ASIC3 выявили различия в модуляции активности человеческой и крысиной изоформы линдолдхамином. С помощью различных протоколов было показано, что связывание линдолдхамина с человеческой изоформой ASIC3 канала в закрытом состоянии приводит к 2 кратному росту амплитуды транзиентного тока в ответ на кислотный рН стимул; при этом на крысиную изоформу ASIC3 лиганд не влиял. Протон независимая активация крысиного канала также была существенно ниже по амплитуде регистрируемого тока. В итоге были показаны существенные фармакологические отличия каналов ASIC3 человека и крысы при их взаимодействии с новым алколоидом, что еще раз доказывает неоднозначность возможной интерпретации данных, получаемых в тестировании на животных моделях, при разработке лекарственных средств для людей. Уникальные фармакологические свойства линдолдхамина позволяют позиционировать его как новый инструмент для изучения активности каналов ASIC, и для изучения синаптической пластичности нервной системы в целом, так как решающая роль этих каналов в этом процессе давно доказана. Уникальным свойством нового лиганда является способность конкурировать с протонами, вызывающими десенситизацию транзиентного тока ASIC3 канала, таким образом, что на кривой рН-зависимости десенситизации наблюдается увеличение амплитуды транзиентного тока, а не сдвиг кривой в область более кислых значений. Ни для одного известного лиганда ASIC такой эффект опубликован ранее не был.

Впервые построена полноразмерная модель рецептора TLR4

Совместно с: Лаборатория моделирования биомолекулярных систем

Были получены структуры трансмембранной и примембранной частей  рецептора TLR4 с использованием спектроскопии ЯМР в различных мембранных окружениях, в том числе фосфолипидных бицеллах. Показано, что примембранная область TLR4 является частью длинной трансмембранной α-спирали. Был найден интерфейс димеризации TM-домена и показано, что такие длинные TM-домены с заряженными аминокислотами - это общая черта всех белков семейства TLR, что позволяет по-другому взглянуть на механизм активации  рецепторов TLR. Наконец, была предложена модель полноразмерного рецептора TLR4 в димерном состоянии на основе структур отдельно взятых доменов.

Вторичная структура и динамика потенциалочувствительного домена второй псевдосубъединицы канала Nav1.4 скелетных мышц человека

Совместно с: Лаборатория моделирования биомолекулярных систем,  Лаборатория биоинженерии нейромодуляторов и нейрорецепторов,  Лаборатория структурной биологии ионных каналов

Потенциалозависимые Na+ каналы играют важнейшую роль в функционировании сердечно-сосудистой, мышечной и нервной систем. α-субъединица Na+ канала состоит из ~2000 аминокислотных остатков, что значительно затрудняет структурные исследования полноразмерных каналов. Методом ЯМР-спектроскопии мембраномоделирующем окружении, был исследован изолированный потенциалочувствительный домен (VSD-II) канала Nav1.4 скелетных мышц человека. Вторичная структура VSD-II схожа со структурой бактериальных Na+ каналов. Часть спирали S4 между первым и вторым консервативными остатками Arg, вероятно, имеет конформацию 3/10-спирали. Данные о релаксации ядер 15N выявили характерную подвижность в мкс-мс временном диапазоне для участков VSD-II, участвующих в предполагаемых межспиральных контактах. VSD-II демонстрирует повышенную подвижность в пс-нс временном диапазоне по сравнению с изолированными VSD K+ каналов.

Структурно-динамическая модель взаимодействия цитотоксина S-типа с мицеллами детергентов и липидными мембранами: спектроскопия ЯМР высокого разрешения и молекулярная динамика.

Совместно с: Лаборатория молекулярной токсинологии,  Лаборатория моделирования биомолекулярных систем

Расшифровка пространственной структуры мембранных пептидов и белков методами спектроскопии ЯМР высокого разрешения предполагает использование сред, моделирующих мембранное окружение. Чаще всего в экспериментах используют мицеллы детергентов. Однако неясно, как перенести результаты таких исследований на липидный бислой. В настоящей работе предложен ответ на этот вопрос для бета-структурного белка, цитотоксина 1 S-типа, выделенного из яда кобры N. oxiana. Пространственная структура белка получена методом спектроскопии ЯМР в водном растворе и в мицеллах додецилфосфохолина (ДФХ). Методами молекулярной динамики (МД) в полноатомном и «крупнозернистом» (coarse-grained) приближениях исследовали встраивание белка в мицеллы ДФХ (Рисунок, левая панель) и в липидный бислой пальмитоилолеоилфосфатидилхолина (Рисунок, правая панель). Показано, что встраивание токсина как в мицеллы, так и в мембраны сопровождается адаптацией молекулы белка к гидрофобно/ гидрофильной среде и конформационной перестройкой в районе окончания петли-II (Рисунок, левая панель). При этом в мицелле реализуется только одно связанное состояние молекулы токсина – окончаниями всех трёх петель молекулы. В бислое наблюдается усреднение между тремя модами связывания – окончаниями первой петли; окончаниями петель I и II; окончаниями всех трёх петель (Рисунок, правая панель, сверху-вниз).

Структура двудоменных токсинов пауков

Совместно с: Лаборатория молекулярных инструментов для нейробиологии

В яде многих пауков обнаружены двудоменные токсины, объединяющие в своей структуре модули, похожие на «простые» однодоменные токсины. Мы провели детальное структурное исследование тех токсинов, что состоят из дисульфид-богатых (похожих на обычные нейротоксины) и линейных (похожих на обычные цитотоксины) модулей. Линейные модули могут служить для ассоциации двудоменных токсинов с мембранами вследствие формирования амфифильных спиралей, характерных для мембрано-активных пептидов. Предложен механизм действия двудоменных токсинов по типу «мембранного доступа» (membrane access): линейные модули взаимодействуют с липидным бислоем, а дисульфид-богатые – с белковым рецептором.

Открыты первые пептидные лиганды, потенцирующие ответ TRPA1 рецепторов на агонисты, проявляющие обезболивающий и противовоспалительный эффекты.

Совместно с: Лаборатория лиганд-рецепторных взаимодействий,  Лаборатория нейрорецепторов и нейрорегуляторов

Из морских анемон видов Metridium senile и Urticina eques выделены и охарактеризованы анальгетические пептиды Мs9а-1 и Ueq 12-1. Пептид Мs9а-1 содержит 35 аминокислотных остатков, а его пространственная структура стабилизирована двумя дисульфидными мостиками подобно ранее описанным  пептидам из морских анемон. Ueq 12-1 состоит из 45 аминокислотных остатков, включая 10 остатков цистеина с необычным распределением, образующих 5 дисульфидных связей, и является уникальным среди многообразия известных пептидов морских анемон. Являясь по сути принципиально новой обнаруженной пространственной структурой, пространственная укладка части полипептидной цепи молекулы Ueq 12-1 похожа на альфа дефензины млекопитающих. Возможно, именно поэтому пептид также обладает слабым антимикробным действием на грамм-положительные бактерии. Структурно непохожие друг не друга пептиды Мs9а-1 и Ueq 12-1 имеют схожий механизм действия и одну биологическую мишень. В тестах in vitro на ооцитах лягушки Xenopus laevis и клетках млекопитающих, экспрессирующих рецептор TRPA1, оба пептида усиливали действие прямых агонистов, таких как AITC и диклофенак. В тестах in vivo на мышах введение пептидов внутривенно давало значительный анальгетический и противовоспалительный эффект, при этом сами пептиды при введении не вызывали ни болевых ощущений ни тепловую гиперчувствительность. Обнаруженные эффекты пептидов связаны с тем, что при взаимодействии с TRPA1 пептиды делают рецептор более восприимчивым к распознаванию своих агонистов (потенцирующее действие), таким образом, при появлении эндогенных раздражителей, таких как, например, медиаторы воспаления, происходит десенситизация TRPA1-экспрессирующих нейронов. Способность этих веществ избирательно усиливать активность белка TRPA1 открывает новые возможности фундаментальных исследований и служит основой создания лекарств от боли и воспаления.

Раскрыт механизм связывания и переноса липидов растительными липид-транспортирующими белками

Совместно с: Лаборатория структурной биологии ионных каналов,  Отдел «Учебно-научный центр»

Новые липид-транспортирующие белки (LTP) чечевицы, гороха и укропа были выделены и охарактеризованы в Учебно-научном центре ранее. В 2017 г. нами показана способность растительных LTP с различной эффективностью связывать и переносить широкий спектр липидных молекул. Установлено, что аффинность LTP по отношению к насыщенным и ненасыщенным жирным кислотам возрастает по мере уменьшения длины ацильных цепей.  Показано, что LTP эффективнее переносят анионный липид DMPG, чем цвиттерионный DMPC. Методами ЯМР-спектроскопии подтверждена более высокая аффинность LTP к анионным липидам и молекулам с небольшим размером гидрофобных цепей. Определена пространственная структура комплекса Lc-LTP2/LPPG. Установлено, что размер внутренней гидрофобной полости LTP увеличивается от 600 до 1000 А3 при связывании с липидами. Ацильные цепи LPPG или DMPG занимают пространство гидрофобной полости LTP, а головки липидов выступают наружу между α–спиральными участками Н1 и Н3. Другой вход в гидрофобную полость Lc-LTP2, ограниченный петлей между α–спиралями H2-H3 и С-концевым участком, играет важную роль во взаимодействии с поверхностью мембраны, участвует в поглощении липидов и определяет селективность LTP по отношению к лиганду. Полученные результаты впервые раскрывают механизм связывания и переноса липидов посредством LTP и углубляют понимание биологической роли растительных LTP.

Активация рецепторных тирозинкиназ сопровождается изменением структурно-динамических параметров липидного бислоя мембраны вблизи белка

Совместно с: Лаборатория моделирования биомолекулярных систем

Для детализации и визуализации предложенного авторами в 2014-2016 гг. оригинального липид-опосредованного механизма активации рецепторных тирозинкиназ (РТК) разработана вычислительная методика картирования динамических белок-липидных контактов на поверхности трансмембранных спиралей, а также способ учета изменения конфигурационной энтропии липидных молекул вследствие возмущений, вызванных в липидном бислое альфа-спиральными димерами белков в разных конформационных состояниях. Методика апробирована в ходе анализа длительных траекторий молекулярной динамики, рассчитанных для различных состояний трансмембранных димеров РТК в бислое ПОФХ – рецепторов PDGFRa и EGFR. Показано, что конформации, соответствующие активному состоянию димеризованного рецептора, оказывают более выраженное возмущение липидного бислоя по сравнению с неактивными.

Альтернативная димеризация ТМ домена рецептора EGFR и белок-липид опосредованный механизм активации РТК

Рецептор эпидермального фактора роста EGFR, как представитель HER/ErbB семейства рецепторных тирозинкиназ (РТК), играет ведущую роль в процессах пролиферации и дифференциации клеток в норме и при патологиях организма человека. С помощью ЯМР-спектроскопии высокого разрешения мы показали, что смена мембранноподобного окружения приводит к альтернативной димеризации  трансмембранного  домена EGFR. Из сопоставления результатов исследования с литературными данными для лиганд-связывающих, примембранных и киназных доменов предложен новый механизм аллостерической передачи сигнала РТК через мембрану клетки посредством согласованных белок-липидного и белок-белковых взаимодействий, объясняющий ряд парадоксов, наблюдаемых при активации EGFR  и других РТК. 

Исследована пространственная структура и подвижность связки трансмембранного и цитоплазматического доменов рецептора нейротрофинов р75

Рецептор нейротрофина р75 является важнейшим участником регуляции клеточного цикла нейронов, его дисфункция может приводить к нейродегенеративным заболеваниям. Для понимания молекулярных механизмов функционирования сигнальной системы р75 в 2015 году было проведено исследование структурной организации и внутримолекулярной подвижности связки трансмембранного и цитоплазматического доменов р75 (р75-ТМД-ЦПД) в различных мембраноподобных средах. Были разработаны протоколы продукции, ренатурации и очистки белка, после чего р75-ТМД-ЦПД был встроен в липид-белковые нанодиски различного размера и состава, структура белка была исследована методом гетероядерной ЯМР-спектроскопии высокого разрешения. Было показано, что глобулярный «домен смерти» р75 соединён с трансмембранным доменом гибким неупорядоченным линкерным участком, движения «домена смерти» и трансмембранного домена никак не взаимосвязаны. На основании полученных данных предложены различные варианты механизмов активации р75.

Структурно-функциональное исследование трансмембранного домена рецептора VEGFR-2

Рецеторная тирозинкиназа VEGFR-2 из семейства рецепторов васкулярных эндотелиальных ростовых факторов регулирует процессы ангиогенеза и является одной из ключевых мишеней для противоопухолевых препаратов. В рамках проекта было проведено структурно-функциональное исследования роли трансмембранного (ТМ) домена рецептора в процессах его активации. Были найдены мутации в ТМ домене, способные вызывать лиганд-независимую активацию VEGFR-2, а также VEGFR-2 с делегированным внеклеточным доменом. Были определены пространственные структуры димера ТМ домена VEGFR-2 дикого типа, тримера ТМ домена VEGFR-2 V769E, а также димера ТМ домена VEGFR-2 G770E/F778E. Для проведения детального сравнения полученных структур была разработана методика для измерения свободной энергии ассоциации ТМ спиралей в мицеллярных средах методами ЯМР спектроскопии высокого разрешения, что позволило для всех трех объектов измерить величины свободной энергии димеризации, и, где возможно, тримеризации. На основании данных мутагенеза, ЯМР-спектроскопии и полученных пространственных структур был предложен механизм активации VEGFR-2, подразумевающий существование неактивного димерного состояния рецептора.