Осипова Зинаида Михайловна

Образование

Период обученияСтрана, городУчебное заведениеДополнительная информация
2005–2007 Москва Московский Химический Лицей 1303 Золотая медаль
2007–2012 Москва РХТУ им. Мендеелеева, ВХК РАН Красный диплом

Избранные публикации

  1. Осипова З.М., Щеглов А.С., Ямпольский И.В. (2018). Новая биолюминесцентная система грибов: перспективы использования в медицинских исследованиях. Вестник РГМУ , [+]

    Биолюминесценция — это химическое окисление небольшой молекулы люциферина кислородом воздуха под действием белка люциферазы, которое сопровождается эмиссией кванта света в видимой области спектра. На основе этой реакции были разработаны различные методы биолюминесцентного имиджинга — получения изображения в живом организме. Они активно используются в медицинских исследованиях. Однако недостатком существующих люминесцентных систем является необходимость добавления люциферина извне перед каждым экспериментом. В настоящей работе обсуждается возможность разработки автономной люминесцентной системы эукариот на основе биолюминесцентной системы высших грибов.

    ID:2065
  2. Пуртов К.В., Осипова З.М., Петушков В.Н., Родионова Н.С., Царькова А.С., Котлобай А.А., Чепурных Т.В., Гороховатский А.Ю., Ямпольский И.В., Гительзон И.И. (2017). Структура оксилюциферина грибов – продукта реакции биолюминесценции. ДАН 477 (2), 245–248 [+]

    Определили структуру оксилюциферина грибов, провели ферментативную реакцию биолюминесценции в условиях насыщения по субстрату с дискретным мониторингом образующихся продуктов и установили структуры конечных продуктов реакции. На основе этих исследований разработали схему деградации оксилюциферина до конечных продуктов. Структуру оксилюциферина грибов подтвердили встречным синтезом.

    ID:1935
  3. Kaskova Z.M., Dörr F.A., Petushkov V.N., Purtov K.V., Tsarkova A.S., Rodionova N.S., Mineev K.S., Guglya E.B., Kotlobay A., Baleeva N.S., Baranov M.S., Arseniev A.S., Gitelson J.I., Lukyanov S., Suzuki Y., Kanie S., Pinto E., DiMascio P., Waldenmaier H.E., Pereira T.A., Carvalho R.P., Oliveira A.G., Oba Y., Bastos E.L., Stevani C.V., Yampolsky I.V. (2017). Mechanism and Color Modulation of Fungal Bioluminescence. Sci Adv 3 (4), e1602847 [+]

    Bioluminescent fungi are spread throughout the globe, but details on their mechanism of light emission are still scarce. Usually, the process involves three key components: an oxidizable luciferin substrate, a luciferase enzyme, and a light emitter, typically oxidized luciferin, and called oxyluciferin. We report the structure of fungal oxyluciferin, investigate the mechanism of fungal bioluminescence, and describe the use of simple synthetic α-pyrones as luciferins to produce multicolor enzymatic chemiluminescence. A high-energy endoperoxide is proposed as an intermediate of the oxidation of the native luciferin to the oxyluciferin, which is a pyruvic acid adduct of caffeic acid. Luciferase promiscuity allows the use of simple α-pyrones as chemiluminescent substrates.

    ID:1628
  4. Baranov M.S., Kaskova Z.M., Gritсenko R., Postikova S.G., Ivashkin P.E., Kislukhin A.A., Moskvin D.I., Mineev K.S., Arseniev A.S., Labas Yu.A., Yampolsky I.V. (2017). Synthesis of Panal Terpenoid Core. Synlett 28 (5), 583–588 [+]

    Panal is a natural bicyclic cadalane-type sesquiterpenoid with an unusual combination of stereocenters. It was isolated in 1988 as an alleged biosynthetic precursor of luciferin (a light-emitting molecule) in a bioluminescent fungus Panellus stipticus. Herein we present the first approach to the synthesis of the terpenoid skeleton of panal, which includes construction of five stereocenters, one of which is easily epimerizable. The key steps in the synthetic approach presented are high-pressure Diels–Alder reaction disobeying the ‘endo rule’, Barbier reductive allylation, and cyclization of trans-decalin ring via ring-closing metathesis.

    ID:1623
  5. Осипова З.М. (2017). Синтетический аналог люциферина Fridericia с улучшенными спектральными характеристиками. Биоорг. хим. 43 (2), 222–224 [+]
    Впервые получен синтетический аналог люциферина Fridericia, обладающий люминесцентной активностью в реакции с люциферазой Fridericia. Показано, что аналог проявляет батохромный сдвиг максимума эмиссии биолюминесценции по сравнению с люциферином, равный 50 нм. Полученное соединение может быть использовано для биоимиджинга in vivo.
    ID:1708
  6. Osipova Z.M. (2017). Synthetic Analogue of Fridericia Luciferin with Improved Spectral Properties. Russ. J. Bioorgan. Chem. 43 (2), 222–224 [+]
    New bioluminescent analogue of Fridericia luciferin was synthesized for the first time. Bioluminescence
    emission maximum of the compound demonstrates a 50-nm bathochromic shift compared to the
    luciferin. The obtained analogue may find use in the novel in vivo bioimaging applications.
    ID:1785
  7. Tsarkova A.S., Kaskova Z.M., Yampolsky I.V. (2016). A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems. Acc. Chem. Res. 49 (11), 2372–2380 [+]

    Bioluminescence, the ability of a living organism to produce light through a chemical reaction, is one of Nature's most amazing phenomena widely spread among marine and terrestrial species. There are various different mechanisms underlying the emission of "cold light", but all involve a small molecule, luciferin, that provides energy for light-generation upon oxidation, and a protein, luciferase, that catalyzes the reaction. Different species often use different proteins and substrates in the process, which suggests that the ability to produce light evolved independently several times throughout evolution. Currently, it is estimated that there are more than 30 different mechanisms of bioluminescence. Even though the chemical foundation underlying the bioluminescence phenomenon is by now generally understood, only a handful of luciferins have been isolated and characterized. Today, the known bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. A pressing need for new bioluminescent analytical techniques with a wider range of practical applications stimulates the search and chemical studies of new bioluminescent systems. In the past few years two such systems were unraveled: those of the earthworms Fridericia heliota and the higher fungi. The luciferins of these two systems do not share structural similarity with the previously known ones. This Account will survey structure elucidation of the novel luciferins and identification of their mechanisms of action. Fridericia luciferin is a key component of a novel ATP-dependent bioluminescence system. Structural studies were performed on 0.005 mg of natural substance and revealed its unusual extensively modified peptidic nature. Elucidation of Fridericia oxyluciferin revealed that oxidative decarboxylation of a lysine fragment of luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as a light emitter. Along with luciferin, a number of its natural analogs were found in the extracts of worm biomass. They occurred to be highly unusual modified peptides comprising a set of amino acids, including threonine, aminobutyric acid, homoarginine, unsymmetrical N,N-dimethylarginine and extensively modified tyrosine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and raise novel questions concerning their biosynthetic origin. Also in this Account we discuss identification of the luciferin of higher fungi 3-hydroxyhispidin which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

    ID:1562
  8. Kaskova Z.M., Tsarkova A.S., Yampolsky I.V. (2016). 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc.Rev. 45, 6048–6077 [+]

    Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of D-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.

    ID:1563
  9. Purtov K.V., Petushkov V.N., Baranov M.S., Mineev K.S., Rodionova N.S., Kaskova Z.M., Tsarkova A.S., Petunin A.I., Bondar V.S., Rodicheva E.K., Medvedeva S.E., Oba Y., Arseniev A.S., Lukyanov S., Gitelson J.I., Yampolsky I.V. (2015). The Chemical Basis of Fungal Bioluminescence. Angew. Chem. Int. Ed. 127 (28), 8242–8246 [+]

    Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

    ID:1295
  10. Dubinnyi M.A., Kaskova Z.M., Rodionova N.S., Baranov M.S., Gorokhovatsky A.Y., Kotlobay A., Solntsev K.M., Tsarkova A.S., Petushkov V.N., Yampolsky I.V. (2015). Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of Fridericia Luciferin. Angew. Chem. Int. Ed. Engl. 54 (24), 7065–7067 [+]

    A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature. Oxidative decarboxylation of a lysine fragment of the luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as the light emitter.

    ID:1265
  11. Dubinnyi M.A., Tsarkova A.S., Petushkov V.N., Kaskova Z.M., Rodionova N.S., Kovalchuk S.I., Ziganshin R.H., Baranov M.S., Mineev K.S., Yampolsky I.V. (2015). Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent Earthworm Fridericia heliota. Chem. Eur. J. 21 (10), 3942–3947 [+]

    Пресс-релиз по теме статьи Новый класс природных пептидов: аналоги люциферина почвенного червя Fridericia heliota

    ID:1243
  12. Krylov V.B., Kaskova Z.M., Vinnitskiy D.Z., Ustyuzhanina N.E., Grachev A.A., Chizhov A.O., Nifantiev N.E. (2011). Acid-promoted synthesis of per-O-sulfated fucooligosaccharides related to fucoidan fragments. Carbohydr. Res. 346 (5), 540–550 [+]

    The synthesis of per-O-sulfated derivatives of di-, tetra-, hexa-, octa-, dodeca-, and hexadecafucosides related to natural fucoidans of different types has been performed with the use of previously reported acid-promoted protocol for per-O-sulfation of polyols by SO(3) complexes. During the treatment of (1→3)-linked oligofucosides under these conditions with the promotion by TfOH, the unusual rearrangement of the reducing pyranose residue into furanose one was observed. To avoid the formation of rearrangement by-products, the use of a series of strong acids as promoters of sulfation of large oligofucosides was studied and the improved protocol was developed based on the use of TFA instead of TfOH. The efficiency of the new method was demonstrated by the syntheses of per-O-sulfated derivatives of dodeca- and hexadecafucosides. The described method of O-sulfation opens access to the preparation of the oligosaccharides related to fucoidan fragments and their per-O-sulfated derivatives interesting for elucidation of the relationship between their structure and biological activity.

    ID:1263
  13. Karavanova Yu.A., Kaskova Z.M., Veresov A.G., Yaroslavtsev A.B. (2010). Diffusion properties of bilayer membranes based on MC-40 and MF-4SC modified with silicon and zirconium oxides. Russian Journal of Inorganic Chemistry 55 (4), 531–536 [+]

    MC-40 membrane samples modified with a thin MF-4SC layer containing inorganic oxide particles have been synthesized. Deposition of an MF-4SC layer raises the diffusion permeability of the membrane. Insertion of ZrO2 or SiO2 nanoparticles into this layer enhances the ion transport selectivity in terms of the cation transport number. The best results are obtained with oxide particles synthesized in the pores of the deposited layer

    ID:1262