Попова Надежда Викторовна

Кандидат биологических наук

Младший научный сотрудник (Лаборатория клеточной биологии рецепторов)

Тел.: +7 (495) 335-41-77

Эл. почта: popova@ibch.ru

Избранные публикации

  1. Deyev I.E., Popova N.V., Serova O.V., Zhenilo S.V., Regoli M., Bertelli E., Petrenko A.G. (2017). Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line. Biochimie 138, 62–69 [+]

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content.

  2. Deyev I.E., Mitrofanova A.V., Zhevlenev E.S., Radionov N., Berchatova A.A., Popova N.V., Serova O.V., Petrenko A.G. (2013). Structural determinants of the insulin receptor-related receptor activation by alkali. J. Biol. Chem. , [+]

    IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline media and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1-333) or L2 domain (residues 334-462), or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (L135, G188, R244, and vicinal H318 and K319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domains replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted towards alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points.

  3. Popova N.V., Deyev I.E., Petrenko A.G. (2013). Clathrin-mediated endocytosis and adaptor proteins. Acta Naturae 5 (3), 62–73 [+]

    Macromolecules gain access to the cytoplasm of eukaryotic cells using one of several ways of which clathrin-dependent endocytosis is the most researched. Although the mechanism of clathrin-mediated endocytosis is well understood in general, novel adaptor proteins that play various roles in ensuring specific regulation of the mentioned process are being discovered all the time. This review provides a detailed account of the mechanism of clathrin-mediated internalization of activated G protein-coupled receptors, as well as a description of the major proteins involved in this process.

  4. Deyev I.E., Rzhevsky D.I., Berchatova A.A., Serova O.V., Popova N.V., Murashev A.N., Petrenko A.G. (2011). Deficient Response to Experimentally Induced Alkalosis in Mice with the Inactivated insrr Gene. Acta Naturae 3 (4), 114–7 [+]

    Currently, the molecular mechanisms of the acid-base equilibrium maintenance in the body remain poorly understood. The development of alkalosis under various pathological conditions poses an immediate threat to human life. Understanding the physiological mechanisms of alkalosis compensation may stimulate the development of new therapeutic approaches and new drugs for treatment. It was previously shown that the orphan insulin receptor-related receptor (IRR) is activated by mildly alkaline media. In this study, we analyzed mutant mice with targeted inactivation of theinsrr gene encoding IRR, and revealed their phenotype related to disorders of the acid-base equilibrium. Higher concentrations of bicarbonate and CO(2)were found in the blood ofinsrr knockout mice in response to metabolic alkalosis.

  5. Popova N.V., Deyev I.E., Petrenko A.G. (2011). Association of adaptor protein TRIP8b with clathrin. J. Neurochem. , [+]

    TRIP8b is a brain-specific hydrophilic cytosolic protein that contains tetratricopeptide repeats (TPRs). Previous studies revealed interaction of this protein via its TPR-containing domain with Rab8b small GTPase, HCN channels and G protein-coupled receptor CIRL. We identified clathrin as a major component of eluates from the TRIP8b affinity matrix. In the present study, by in vitro binding analysis we demonstrate a direct interaction between clathrin and TRIP8b. The clathrin-binding site was localized in the N-terminal (non-TPR containing) part of the TRIP8b molecule that contains two short motifs involved in the clathrin binding. In transfected HEK293 cells, co-expression of HCN1 with TRIP8b resulted in translocation of the channels from the cell surface to large intracellular puncta where both TRIP8b and clathrin were concentrated. These puncta co-localized partially with an early endosome marker and strongly overlapped with lysosome staining reagent. When HCN1 was co-expressed with a clathrin-non-binding mutant of TRIP8b, clathrin did not translocate to HCN1 and TRIP8b-containing puncta, suggesting that TRIP8b interacts with HCN and clathrin independently. We found TRIP8b present in the fraction of clathrin-coated vesicles purified from brain tissues. Stripping the clathrin coat proteins from the vesicles with Tris alkaline buffer resulted in concomitant release of TRIP8b. Our data suggest complex regulatory functions of TRIP8b in neuronal endocytosis through independent interaction with membrane proteins and components of the clathrin coat.

  6. Deyev I.E., Sohet F., Vassilenko K.P., Serova O.V., Popova N.V., Zozulya S.A., Burova E.B., Houillier P., Rzhevsky D.I., Berchatova A.A., Murashev A.N., Chugunov A.O., Efremov R.G., Nikolsky N.N., Bertelli E., Eladari D., Petrenko A.G. (2011). Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab. 13 (6), 679–89 [+]

    The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.

  7. Serova O.V., Popova N.V., Petrenko A.G., Deyev I.E. (2010). Association of the subunits of the calcium-independent receptor of α-latrotoxin. Biochem. Biophys. Res. Commun. 402 (4), 658–62 [+]

    CIRL-1 also called latrophilin 1 or CL belongs to the family of adhesion G protein-coupled receptors (GPCRs). As all members of adhesion GPCR family CIRL-1 consists of two heterologous subunits, extracellular hydrophilic p120 and heptahelical membrane protein p85. Both CIRL-1 subunits are encoded by one gene but as a result of intracellular proteolysis of precursor, mature receptor has two-subunit structure. It was also shown that a minor portion of the CIRL-1 receptor complexes dissociates, producing the soluble receptor ectodomain, and this dissociation is due to the second cleavage at the site between the site of primary proteolysis and the first transmembrane domain. Recently model of independent localization p120 and p85 on the cell surface was proposed. In this article we evaluated the amount of p120-p85 complex still presented on the cellular membrane and confirmed that on cell surface major amount of mature CIRL-1 presented as a p120-p85 subunit complex.

  8. Serova O.V., Popova N.V., Deev I.E., Petrenko A.G. (2009). Identification of proteins in complexes with alpha-latrotoxin receptors. Bioorg. Khim. 34 (6), 747–53 [+]

    A thorough analysis of proteins capable of interacting with presynaptic receptors of alpha-latrotoxin was carried out. The protein components of receptor complexes were isolated from rat brain membranes by affinity chromatography on immobilized alpha-latrotoxin and antibodies to the cytoplasmic moiety of the calcium-independent receptor of alpha-latrotoxin (CIRL) followed by analysis by mass spectrometry. Several proteins were identified, with structural proteins, intracellular signal proteins, and proteins involved in the endocytosis and transport of synaptic vesicles being among them.

  9. Popova N.V., Plotnikov A., Deev I.E., Petrenko A.G. (2009). Interaction of calcium-independent latrotoxin receptor with intracellular adapter protein TRIP8b. Dokl. Biochem. Biophys. 414, 149–51 [+]

    Кальций-независимый рецептор латротоксина (CIRL, calcium-independent receptor of α-latrotoxin или latrophilin) принадлежит недавно открытому семейству G-белок сопряженных рецепторов (GPCR), имеющих протяженную N-концевую внеклеточную область, включающую структурные домены белков клеточной адгезии. Данные семистолбовые рецепторы представляют интерес, поскольку способны сочетать внеклеточные адгезионные взаимодействия с внутриклеточными сигналами, опосредованными G-белками. В настоящее время для рецепторов CIRL неизвестны эндогенные лиганды, а также конкретные пути внутриклеточной передачи сигналов. Для выяснения молекулярных механизмов функционирования данных рецепторов мы провели поиск их внутриклеточных партнеров с помощью дрожжевой двухгибридной системы. Нами впервые, в качестве партнера CIRL, идентифицирован адаптерный белок TRIP8b. Полученные результаты позволяют предположить, что данный белок осуществляет роль регулятора транспорта CIRL с цитоплазматической мембраны в эндосомы.

  10. Popova N.V., Plotnikov A.N., Ziganshin R.K.h., Deyev I.E., Petrenko A.G. (2008). Analysis of proteins interacting with TRIP8b adapter. Biochemistry Mosc. 73 (6), 644–51 [+]

    Calcium-independent receptor of latrotoxin (CIRL) is an orphan heptahelical receptor implicated in regulation of exocytosis. To characterize molecular mechanisms of CIRL functioning, we searched for its intracellular partners using the yeast two-hybrid SR system with the cytoplasmic C-terminal fragment of CIRL as bait. One of the interacting proteins was identified as TRIP8b, a putative cytosolic adapter protein with multiple tetratricopeptide repeats. To understand functional significance of CIRL-TRIP8b interaction, we further isolated TRIP8b-interacting proteins by affinity chromatography of brain extracts on immobilized recombinant TRIP8b. Sixteen proteins were identified by mass spectrometry in the purified preparations. Clathrin and subunits of AP2 complex appeared to be the major TRIP8b-interacting proteins. Our data suggest a role of TRIP8b in receptor-mediated endocytosis.

  11. Chernov K.G., Mechulam A., Popova N.V., Pastre D., Nadezhdina E.S., Skabkina O.V., Shanina N.A., Vasiliev V.D., Tarrade A., Melki J., Joshi V., Baconnais S., Toma F., Ovchinnikov L.P., Curmi P.A. (2008). YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules. BMC Biochem. 9, 23 [+]

    YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs.

  12. Skabkina O.V., Skabkin M.A., Popova N.V., Lyabin D.N., Penalva L.O., Ovchinnikov L.P. (2003). Poly(A)-binding protein positively affects YB-1 mRNA translation through specific interaction with YB-1 mRNA. J. Biol. Chem. 278 (20), 18191–8 [+]

    The major protein of cytoplasmic mRNPs from rabbit reticulocytes, YB-1, is a member of an ancient family of proteins containing a common structural feature, cold-shock domain. In eukaryotes, this family is represented by multifunctional mRNA/Y-box DNA-binding proteins that control gene expression at different stages. To address possible post-transcriptional regulation of YB-1 gene expression, we examined effects of exogenous 5'- and 3'-untranslatable region-containing fragments of YB-1 mRNA on its translation and stability in a cell-free system. The addition of the 3' mRNA fragment as well as its subfragment I shut off protein synthesis at the initiation stage without affecting mRNA stability. UV cross-linking revealed four proteins (69, 50, 46, and 44 kDa) that specifically interacted with the 3' mRNA fragment; the inhibitory subfragment I bound two of them, 69- and 50-kDa proteins. We have identified these proteins as PABP (poly(A)-binding protein) (69 kDa) and YB-1 (50 kDa) and demonstrated that titrating out of PABP by poly(A) strongly and specifically inhibits YB-1 mRNA cap(+)poly(A)(-) translation in a cell-free system. Thus, PABP is capable of positively affecting YB-1 mRNA translation in a poly(A) tail-independent manner.