Шелухина Ирина Валерьевна


Период обученияСтрана, городУчебное заведениеДополнительная информация
2006–2009 Россия, Москва ИБХ РАН Молекулярная биология
2001–2006 Россия, Москва МГУ им. М.В. Ломоносова Биохимия

Членство в научных обществах

International Society for Neurochemistry (ISN)

Избранные публикации

  1. Kasheverov I.E., Chugunov A.O., Kudryavtsev D.S., Ivanov I.A., Zhmak M.N., Shelukhina I.V., Spirova E.N., Tabakmakher V.M., Zelepuga E.A., Efremov R.G., Tsetlin V.I. (2016). High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Sci Rep 6, 36848 [+]

    Despite some success for small molecules, elucidating structure-function relationships for biologically active peptides - the ligands for various targets in the organism - remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules' surface as projection maps, which enables the exposure of the structure-function dependencies. Here, we use PST to uncover the "activity pattern" in α-conotoxins - neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by "standard" structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.

  2. Manetti D., Bellucci C., Dei S., Teodori E., Varani K., Spirova E., Kudryavtsev D., Shelukhina I., Tsetlin V., Romanelli M.N. (2016). New quinoline derivatives as nicotinic receptor modulators. European journal of medicinal chemistry 110, 246–258 [+]

    As a continuation of previous work on quinoline derivatives, which showed some preference (2-3 times) for the α7 with respect to α4β2 acetylcholine nicotinic receptors (nAChRs), we synthesized a series of novel azabicyclic or diazabicyclic compounds carrying a quinoline or isoquinoline ring, with the aim of searching for more selective α7 nAChR compounds. Radioligand binding studies on α7* and α4β2* nAChRs (rat brain homogenate) revealed one compound (7) with a 2-fold higher affinity for the α4β2*-subtype, and four compounds (11, 13, 14 and 16) with at least 3-fold higher affinity for α7* nAChR. The most promising was 11, showing Ki∼100 nM and over 10-fold selectivity for α7* nAChR. Compounds 7, 11, 13 and 16 at 50 μM suppressed ion currents induced in the rat α4β2 nAChR and the chimeric nAChR composed of the ligand-binding domain of the chick α7 and transmembrane domain of the α1 glycine receptor, expressed in Xenopus oocytes. Calcium imaging experiments on the human α7 nAChR expressed in the Neuro2a cells and potentiated by PNU-120596 confirmed the antagonistic activity for 7; on the contrary, 11, 13 and 16 were agonists with the EC50 values in the range of 1.0-1.6 μM. Thus, the introduced modifications allowed us to enhance the selectivity of quinolines towards α7 nAChR and to get novel compounds with agonistic activity.

  3. MalcaGarcia G.R., Hennig L., Shelukhina I.V., Kudryavtsev D.S., Bussmann R.W., Tsetlin V.I., Giannis A. (2015). Curare Alkaloids: Constituents of a Matis Dart Poison. J. Nat. Prod. , [+]

    A phytochemical study of dart and arrow poison from the Matis tribe led to the identification of d-(-)-quinic acid, l-malic acid, ethyldimethylamine, magnoflorine, and five new bisbenzyltetrahydroisoquinoline alkaloids (BBIQAs), 1-5. d-Tubocurarine could not be identified among these products. BBIQA (3) contains a unique linkage at C-8 and C-11'. All structures were characterized by a combination of NMR and HRESIMS data. The effects of Matis poison and individual BBIQAs (1-3) on rat muscle nAChR expressed in Xenopus oocytes have been investigated using the two-electrode voltage clamp technique.

  4. Kudryavtsev D.S., Shelukhina I.V., Son L.V., Ojomoko L.O., Kryukova E.V., Lyukmanova E.N., Zhmak M.N., Dolgikh D.A., Ivanov I.A., Kasheverov I.E., Starkov V.G., Ramerstorfer J., Sieghart W., Tsetlin V.I., Utkin Y.N. (2015). Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic GABA Receptors. J. Biol. Chem. , [+]

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins (TFTs) from snake venoms, specifically stained the α1β3γ2 receptor; at 10 μM α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nM) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other TFTs: long α-neurotoxin Ls III and non-conventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and non-competitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accomodating under loop C of the receptors.

  5. Kudryavtsev D., Shelukhina I., Vulfius C., Makarieva T., Stonik V., Zhmak M., Ivanov I., Kasheverov I., Utkin Y., Tsetlin V. (2015). Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 7 (5), 1683–701 [+]

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  6. John D., Shelukhina I., Yanagawa Y., Deuchars J., Henderson Z. (2015). Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Res. 1601, 15–30 [+]

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  7. Kasheverov I.E., Shelukhina I.V., Kudryavtsev D.S., Makarieva T.N., Spirova E.N., Guzii A.G., Stonik V.A., Tsetlin V.I. (2015). 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar Drugs 13 (3), 1255–66 [+]

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.

  8. Zakharov A., Vitale C., Kilinc E., Koroleva K., Fayuk D., Shelukhina I., Naumenko N., Skorinkin A., Khazipov R., Giniatullin R. (2015). Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci 9, 287 [+]

    Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish "responder" (65%) from "non-responder" clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine.

  9. Shelukhina I., Paddenberg R., Kummer W., Tsetlin V. (2014). Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Struct Funct , [+]

    In recent pain studies on animal models, α7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of α7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the α7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport α7 nAChR axonally. In addition, α7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized α7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5 % of small ones. 83.2 % of α7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated Aδ- and likely Aα/β-fibers, whereas 15.2 % were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic α7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported α7 nAChRs both to the spinal cord and periphery. α7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by α7-selective positive allosteric modulator PNU120596. However, α7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of α7 nAChRs in those neurons.

  10. Kamynina A.V., Volpina O.M., Medvinskaya N.I., Aleksandrova I.J., Volkova T.D., Koroev D.O., Samokhin A.N., Nesterova I.V., Shelukhina I.V., Kryukova E.V., Tsetlin V.I., Ivanov V.T., Bobkova N.V. (2010). Vaccination with peptide 173-193 of acetylcholine receptor α7-subunit prevents memory loss in olfactory bulbectomized mice. J. Alzheimers Dis. 21 (1), 249–61 [+]

    We studied the ability of four non-conjugated alpha7-subunit fragments of the nicotinic acetylcholine receptor to induce an immune response and to protect memory in olfactory bulbectomized mice which demonstrate abnormalities similar to Alzheimer's disease (AD). Vaccination only with the alpha7-subunit fragment 173-193 was shown to rescue spatial memory, to restore the level of alpha7 acetylcholine receptors in the cortex, and to prevent an increase in the amyloid-beta (Abeta) level in brain tissue in these animals. Antibodies against the peptide 173-193 were revealed in blood serum and cerebrospinal liquid in the bulbectomized mice. Passive immunization with mouse blood sera containing antibodies to the peptide 173-193 also restored memory in bulbectomized animals. The observed positive effect of both active and passive immunization with the fragment of alpha7-subunit on memory of bulbectomized mice provides a new insight into an anti-AD drug design.

  11. Shelukhina I.V., Kryukova E.V., Lips K.S., Tsetlin V.I., Kummer W. (2009). Presence of alpha7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective alpha-neurotoxins in histochemistry. J. Neurochem. 109 (4), 1087–95 [+]

    In complex tissues where multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed, immunohistochemistry has been the most popular tool for investigation of nAChR subunit distribution. However, recent studies with nAChR subunit knockout mice demonstrated that a large panel of antibodies is unsuitable. Thus, we aimed to develop a histochemical method for selective labeling of alpha7 nAChR with neurotoxins, utilizing alpha7 nAChR-transfected cells, dorsal root ganglia (DRG) and spinal cord from wild-type and knockout mouse. The specificity of Alexa Fluor 488-conjugated alpha-bungarotoxin (Alexa-alphaBgt) was demonstrated in binding to alpha7-transfected cells inhibited by long-chain alpha-cobratoxin (CTX), but not short-chain alpha-neurotoxin II (NTII). In contrast, binding to Torpedo muscle-type nAChRs and to motor end plates in mouse tongue sections was prevented by both CTX and NTII. In tissue sections of DRG, expressing all neuronal nAChR subunits, only CTX precluded Alexa-alphaBgt labeling of neurons, with no staining for alpha7 nAChR knockout tissue. It proved that alpha7 nAChRs are the major alphaBgt-binding sites in mouse DRG. Corresponding results were obtained for terminals in the spinal cord. Thus, we present a protocol utilizing Alexa-alphaBgt and non-labeled CTX/NTII that allows specific histochemical detection of alpha7 nAChR with a spatial resolution at the level of single axon terminals.