Якименко Зоя Александровна


Эл. почта: pipa10@yandex.ru

Избранные публикации

  1. Shenkarev Z.O., Paramonov A.S., Lyukmanova E.N., Gizatullina A.K., Zhuravleva A.V., Tagaev A.A., Yakimenko Z.A., Telezhinskaya I.N., Kirpichnikov M.P., Ovchinnikova T.V., Arseniev A.S. (2013). Peptaibol antiamoebin I: spatial structure, backbone dynamics, interaction with bicelles and lipid-protein nanodiscs, and pore formation in context of barrel-stave model. Chem. Biodivers. 10 (5), 838–63 [+]

    Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. In comparison with other 16-amino acid-residue peptaibols, e.g., zervamicin IIB (Zrv-IIB), Aam-I possesses relatively weak biological and channel-forming activities. In MeOH solution, Aam-I demonstrates fast cooperative transitions between right-handed and left-handed helical conformation of the N-terminal (1-8) region. We studied Aam-I spatial structure and backbone dynamics in the membrane-mimicking environment (DMPC/DHPC bicelles)(1) ) by heteronuclear (1) H,(13) C,(15) N-NMR spectroscopy. Interaction with the bicelles stabilizes the Aam-I right-handed helical conformation retaining significant intramolecular mobility on the ms-μs time scale. Extensive ms-μs dynamics were also detected in the DPC and DHPC micelles and DOPG nanodiscs. In contrast, Zrv-IIB in the DPC micelles demonstrates appreciably lesser mobility on the μs-ms time scale. Titration with Mn(2+) and 16-doxylstearate paramagnetic probes revealed Aam-I binding to the bicelle surface with the N-terminus slightly immersed into hydrocarbon region. Fluctuations of the Aam-I helix between surface-bound and transmembrane (TM) state were observed in the nanodisc membranes formed from the short-chain (diC12 : 0) DLPC/DLPG lipids. All the obtained experimental data are in agreement with the barrel-stave model of TM pore formation, similarly to the mechanism proposed for Zrv-IIB and other peptaibols. The observed extensive intramolecular dynamics explains the relatively low activity of Aam-I.

    ID:978
  2. Shenkarev Z.O., Lyukmanova E.N., Solozhenkin O.I., Gagnidze I.E., Nekrasova O.V., Chupin V.V., Tagaev A.A., Yakimenko Z.A., Ovchinnikova T.V., Kirpichnikov M.P., Arseniev A.S. (2009). Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochemistry Mosc. 74 (7), 756–65 [+]

    High-resolution NMR is shown to be applicable for investigation of membrane proteins and membrane-active peptides embedded into lipid-protein nanodiscs (LPNs). (15)N-Labeled K+-channel from Streptomyces lividans (KcsA) and the antibiotic antiamoebin I from Emericellopsis minima (Aam-I) were embedded in LPNs of different lipid composition. Formation of stable complexes undergoing isotropic motion in solution was confirmed by size-exclusion chromatography and (31)P-NMR spectroscopy. The 2D 1H-(15)N-correlation spectra were recorded for KcsA in the complex with LPN containing DMPC and for Aam-I in LPNs based on DOPG, DLPC, DMPC, and POPC. The spectra recorded were compared with those in detergent-containing micelles and small bicelles commonly used in high-resolution NMR spectroscopy of membrane proteins. The spectra recorded in LPN environments demonstrated similar signal dispersion but significantly increased (1)H(N) line width. The spectra of Aam-I embedded in LPNs containing phosphatidylcholine showed significant selective line broadening, thus suggesting exchange process(es) between several membrane-bound states of the peptide. (15)N relaxation rates were measured to obtain the effective rotational correlation time of the Aam-I molecule. The obtained value (approximately 40 nsec at 45 degrees C) is indicative of additional peptide motions within the Aam-I/LPN complex.

    ID:353
  3. Ovchinnikova T.V., Levitskaya N.G., Voskresenskaya O.G., Yakimenko Z.A., Tagaev A.A., Ovchinnikova A.Y., Murashev A.N., Kamenskii A.A. (2007). Neuroleptic properties of the ion-channel-forming peptaibol zervamicin: locomotor activity and behavioral effects. Chem. Biodivers. 4 (6), 1374–87 [+]

    Zervamicins IIA and IIB are members of the peptaibol family of peptide antibiotics. They are produced by the fungus Emericellopsis salmosynnemata. Peptaibols are known to be of potential usefulness for chemotherapeutic applications, as are other secondary fungal metabolites. Previously, we have found zervamicins to decrease spontaneous locomotor activity in mice, suggesting their neurotropic properties on an equal footing with antimicrobial activity. The current study deals with behavioral effects of zervamicins IIA and IIB in mice. According to our results, both zervamicins induce a reliable decrease in locomotion and exploratory activity measured in the hole-board test. The behavioral effects of zervamicin IIA become apparent at lower dosages (0.05-2.0 mg/kg) as compared with zervamicin IIB (0.5-12.0 mg/kg). The experiments on behavioral effects in the elevated plus maze test showed that both zervamicins caused a reliable decrease in the number of head-dippings, open-arm entries, and rearings. The observed behavioral effects may be rather associated with a decrease in the exploratory activity than with anxiety-related responses in mice. Zervamicins induced depression-like behavior of experimental animals in the forced-swim test. Both peptaibols reduce physical endurance and change motor coordination of experimental animals in the bar-holding test. Taken together, the data obtained clearly indicate that both zervamicins possess neuroleptic activity.

    ID:416
  4. Shenkarev Z.O., Paramonov A.S., Nadezhdin K.D., Bocharov E.V., Kudelina I.A., Skladnev D.A., Tagaev A.A., Yakimenko Z.A., Ovchinnikova T.V., Arseniev A.S. (2007). Antiamoebin I in methanol solution: rapid exchange between right-handed and left-handed 3(10)-helical conformations. Chem. Biodivers. 4 (6), 1219–42 [+]

    Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. Antiamoebin I has the amino acid sequence: Ac-Phe(1)-Aib-Aib-Aib-Iva-Gly-Leu-Aib(8)-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl(16). By using the uniformly (13)C,(15)N-labeled sample of Aam-I, the set of conformationally dependent J couplings and (3h)J(NC) couplings through H-bonds were measured. Analysis of these data along with the data on magnetic nonequivalence of the (13)C(beta) nuclei (Deltadelta((13)C(beta))) in Aib and Iva residues allowed us to draw the univocal conclusion that the N-terminal part (Phe(1)-Gly(6)) of Aam-I in MeOH solution is in fast exchange between the right-handed and left-handed 3(10)-helical conformations, with an approximately equal population of both states. An additional conformational exchange process was found at the Aib(8) residue. The (15)N-NMR-relaxation and CD-spectroscopy measurements confirmed these findings. Molecular modeling and Monte Carlo simulations revealed that both exchange processes are correlated and coupled with significant hinge-bending motions around the Aib(8) residue. Our results explain relatively low activity of Aam-I with respect to other 15-amino acid residue peptaibols (for example, zervamicin) in functional and biological tests. The high dynamic 'propensity' possibly prevents both initial binding of the antiamoebin to the membrane and subsequent formation of stable ionic channels according to the barrel-stave mechanism.

    ID:418
  5. Kropacheva T.N., Salnikov E.S., Nguyen H.H., Reissmann S., Yakimenko Z.A., Tagaev A.A., Ovchinnikova T.V., Raap J. (2005). Membrane association and activity of 15/16-membered peptide antibiotics: zervamicin IIB, ampullosporin A and antiamoebin I. Biochim. Biophys. Acta 1715 (1), 6–18 [+]

    Permeabilization of the phospholipid membrane, induced by the antibiotic peptides zervamicin IIB (ZER), ampullosporin A (AMP) and antiamoebin I (ANT) was investigated in a vesicular model system. Membrane-perturbing properties of these 15/16 residue peptides were examined by measuring the K(+) transport across phosphatidyl choline (PC) membrane and by dissipation of the transmembrane potential. The membrane activities are found to decrease in the order ZER>AMP>>ANT, which correlates with the sequence of their binding affinities. To follow the insertion of the N-terminal Trp residue of ZER and AMP, the environmental sensitivity of its fluorescence was explored as well as the fluorescence quenching by water-soluble (iodide) and membrane-bound (5- and 16-doxyl stearic acids) quenchers. In contrast to AMP, the binding affinity of ZER as well as the depth of its Trp penetration is strongly influenced by the thickness of the membrane (diC(16:1)PC, diC(18:1)PC, C(16:0)/C(18:1)PC, diC(20:1)PC). In thin membranes, ZER shows a higher tendency to transmembrane alignment. In thick membranes, the in-plane surface association of these peptaibols results in a deeper insertion of the Trp residue of AMP which is in agreement with model calculations on the localization of both peptide molecules at the hydrophilic-hydrophobic interface. The observed differences between the membrane affinities/activities of the studied peptaibols are discussed in relation to their hydrophobic and amphipathic properties.

    ID:424
  6. Shenkarev Z.O., Paramonov A.S., Balashova T.A., Yakimenko Z.A., Baru M.B., Mustaeva L.G., Raap J., Ovchinnikova T.V., Arseniev A.S. (2004). High stability of the hinge region in the membrane-active peptide helix of zervamicin: paramagnetic relaxation enhancement studies. Biochem. Biophys. Res. Commun. 325 (3), 1099–105 [+]

    Zervamicin IIB is a 16 amino acid peptaibol that forms voltage dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. Stability of the hinge region and intermolecular interactions were investigated in the N- and C-terminally spin-labelled peptide analogues. Intermolecular and intramolecular paramagnetic enhancement indicates that zervamicin behaves as a rigid helical rod in methanol solution. There are no high amplitude hinge-bending motions, and the peptaibol is monomeric up to concentration 1.5 mM. Stability of the hinge region illustrates the helix stabilising propensity of the Pro residue in membrane mimic environments and implies absence of significant conformational rearrangement due to voltage peptaibol activation.

    ID:425