News

  • In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke science news XI.30

    The team of the Department of metabolism and redox biology of Institute of Bioorganic Chemistry in collaboration with colleagues from the Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Lomonosov Moscow State University and several other institutes have developed a technology that allows real time recording of intracellular metabolic processes in vivo. On the model of ischemic stroke in rodents, the new data were obtained on changes occurring in neurons during the development of pathology.

  • Barnase*Barstar-guided two-step targeting approach for drug delivery to tumor cells in vivo science news XI.19

    To reduce side effects in the process of oncotherapy, it seems promising to use two-step targeting delivery of active agents, or pre-targeting: at the first stage, a non-toxic targeting module (also including antibody or non-immunoglobulin scaffolds) is selectively delivered to a cell of a certain molecular profile, and at the second stage, a cytotoxic agent capable of specifically interacting with the first module is administrated into the organism.

  • Antigen-specific stimulation and expansion of CAR-T cells using membrane vesicles as target cell surrogates science news XI.11

    Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. In this work, a team of scientists from the IBCh RAS in collaboration with a group of scientists from Dmitry Rogachev National Medical Research Center and colleagues from the Faculty of Biology of Moscow State University have created a new technology for the expansion of CAR T cells using artificial vesicles carrying surface tumor antigens. This approach will allow in the future to obtain CAR T-cells with improved functional properties and to minimize the level of premature "exhaustion" of the CAR T-cell population.