Объявления →


  • science news Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives January 12

    The team from the Department of metabolism and redox biology together with Russian and foreign colleagues from Belgium and France, has developed a new analytical tool that allows registering (pseudo)hypohalous stress in living systems at subcellular resolution in real-time mode. The indicator was characterized in detail in vitro, and the spatial structure of a redox sensor based on a circularly permuted fluorescent protein was established for the first time. The resulting instrument was used to visualize the dynamics of active halogen species in the model of inflammation caused by the amputation of Danio rerio caudal fin. The work was published in Nature Communications journal (IF 14.919).

  • science news Scalers: genes that regulate scale invariance of embryonic development January 10

    Embryos of many organisms are able to maintain the invariance of their structure, regardless of size – the so-called phenomenon of embryonic scaling. For example, embryos of sea urchin or frog, which have developed from individual cells isolated shortly after the beginning of egg cleavage, self-regulate their structure so that they appear as smaller copies of normal ones. Researchers at the Laboratory of Molecular Bases of Embryogenesis at the IBCH RAS have proposed a general approach to the study of the mechanisms of embryonic scaling. They heuristically postulated and then mathematically proved the existence of special genes, named scalers, the expression of which depends on the embryo size, developed a method for targeted search of such genes, and, as proof of principle, disclose the mechanism by means of which one of the found scalers, mmp3, regulates patterning of Xenopus laevis embryo in a size-dependent manner.

  • science news FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor December 14, 2021

    Determination of the pH value in living cells and tissues is of great importance in physiology and cell biology. Researchers from the Institute of Bioorganic Chemistry, Russian Academy of Sciences, from the Laboratory of Receptor Cell Biology, Laboratory of Molecular Theranostics and the Group of Molecular Physiology, together with colleagues from the I Prokhorov General Physics Institute and Moscow State University, a genetically encoded fluorescent sensor for measuring the pH of the extracellular medium in the slightly alkaline range has been created.

  • science news In memory of Alexander Georgievich Petrenko December 6, 2021

    The FEBS Journal has published an obituary dedicated to our colleague, the head of the Laboratory of Receptor Cell Biology, the remarkable scientist Alexander Georgievich Petrenko, who died from COVID-19 in May 2021. The publication covers the scientific career of Alexander Petrenko, which lasted more than 4 decades. For more details on the publication, please follow the link:

  • science news IBCH RAS mourns passing of Richard Lerner December 6, 2021

    An outstanding scientist, director and president of the Scripps Research Institute (from 1987 to 2012), founding director of the Shanghai Institute for Advanced Immunochemical Studies, a member of the International Advisory Board of the IBCh RAS and a laureate of many international awards, Professor Richard Lerner passed away on December 2, 2021 at the age of 83. He made a huge contribution to the development of biological and medical sciences. The staff and administration of the IBCh RAS express their sincere condolences to the family, friends and colleagues of Richard Lerner.

  • science news In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke November 30, 2021

    The team of the Department of metabolism and redox biology of Institute of Bioorganic Chemistry in collaboration with colleagues from the Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Lomonosov Moscow State University and several other institutes have developed a technology that allows real time recording of intracellular metabolic processes in vivo. On the model of ischemic stroke in rodents, the new data were obtained on changes occurring in neurons during the development of pathology.

  • science news Barnase*Barstar-guided two-step targeting approach for drug delivery to tumor cells in vivo November 19, 2021

    To reduce side effects in the process of oncotherapy, it seems promising to use two-step targeting delivery of active agents, or pre-targeting: at the first stage, a non-toxic targeting module (also including antibody or non-immunoglobulin scaffolds) is selectively delivered to a cell of a certain molecular profile, and at the second stage, a cytotoxic agent capable of specifically interacting with the first module is administrated into the organism.

  • science news Antigen-specific stimulation and expansion of CAR-T cells using membrane vesicles as target cell surrogates November 11, 2021

    Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. In this work, a team of scientists from the IBCh RAS in collaboration with a group of scientists from Dmitry Rogachev National Medical Research Center and colleagues from the Faculty of Biology of Moscow State University have created a new technology for the expansion of CAR T cells using artificial vesicles carrying surface tumor antigens. This approach will allow in the future to obtain CAR T-cells with improved functional properties and to minimize the level of premature "exhaustion" of the CAR T-cell population.

  • science news Development of single-domain inhibitory antibodies targeting the ErbB3 receptor for cancer therapy November 11, 2021

    The human ErbB3 receptor is an important pharmacological target in the treatment of various types of cancer. A variety of anti-ErbB3 monoclonal antibodies are currently in development and are classic immunoglobulins. However, the search for new sources of antibodies or nanoantibodies consisting only of the heavy chain is being conducted more and more actively. Thus, in this work, a team of scientists from the Laboratory of Biocatalysis of the IBCh RAS, together with colleagues from the Laboratory of Renewable Energy Sources of the Academic University discovered a group of new single-domain llama antibodies targeting the extracellular domain of ErbB3 using the phage display method. It was found that the single-domain antibodies are not only highly affine for various receptor epitopes, but also have an inhibitory effect on the growth of tumor cells expressing ErbB3.

  • science news Engineered Removal of PD-1 From the Surface of CD19 CAR-T Cells Results in Increased Activation and Diminished Survival November 8, 2021

    CAR-T cell therapy is the most advanced way to treat therapy resistant hematologic cancers, in particular B cell lymphomas and leukemias. T cells equipped ex vivo with chimeric receptor recognize target tumor cells and kill them. CAR-T cells that recognize CD19 marker of B cells (CD19 CAR-T) are considered the gold standard of CAR-T therapy and are approved by FDA. But in some cases, CD19 CAR-T cell therapy fails due to immune suppressive microenvironment.