Sci Rep, 2020, 10(1):11049

DiB-splits: nature-guided design of a novel fluorescent labeling split system.

Fluorogen-activating proteins (FAPs) are innovative fluorescent probes combining advantages of genetically-encoded proteins such as green fluorescent protein and externally added fluorogens that allow for highly tunable and on demand fluorescent signaling. Previously, a panel of green- and red-emitting FAPs has been created from bacterial lipocalin Blc (named DiBs). Here we present a rational design as well as functional and structural characterization of the first self-assembling FAP split system, DiB-splits. This new system decreases the size of the FAP label to ~8-12 kDa while preserving DiBs' unique properties: strong increase in fluorescence intensity of the chromophore upon binding, binding affinities to the chromophore in nanomolar to low micromolar range, and high photostability of the protein-ligand complex. These properties allow for use of DiB-splits for wide-field, confocal, and super-resolution fluorescence microscopy. DiB-splits also represent an attractive starting point for further design of a protein-protein interaction detection system as well as novel FAP-based sensors.

IBCH: 8662
Ссылка на статью в журнале: http://www.nature.com/articles/s41598-020-67095-2
Кол-во цитирований на 01.2024: 5
Данные статьи проверены модераторами 2020-07-14

Список научных проектов, где отмечена публикация

  1. -Флуоресцентные метки для сверхразрешающей микроскопии (January 6, 2016 — December 31, 2020). Mishin A.S.. Grant, RSF.