Гороховатский Андрей Юрьевич

Кандидат биологических наук

Научный сотрудник (Группа синтеза природных соединений)

Эл. почта: andrey.gorokhovatsky@yandex.ru

Избранные публикации

  1. Sarkisyan K.S., Goryashchenko A.S., Lidsky P.V., Gorbachev D.A., Bozhanova N.G., Gorokhovatsky A.Y., Pereverzeva A.R., Ryumina A.P., Zherdeva V.V., Savitsky A.P., Solntsev K.M., Bommarius A.S., Sharonov G.V., Lindquist J.R., Drobizhev M., Hughes T.E., Rebane A., Lukyanov K.A., Mishin A.S. (2015). Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime. Biophys. J. 109 (2), 380–9 [+]

    Spectral diversity of fluorescent proteins, crucial for multiparameter imaging, is based mainly on chemical diversity of their chromophores. Recently we have reported, to our knowledge, a new green fluorescent protein WasCFP-the first fluorescent protein with a tryptophan-based chromophore in the anionic state. However, only a small portion of WasCFP molecules exists in the anionic state at physiological conditions. In this study we report on an improved variant of WasCFP, named NowGFP, with the anionic form dominating at 37°C and neutral pH. It is 30% brighter than enhanced green fluorescent protein (EGFP) and exhibits a fluorescence lifetime of 5.1 ns. We demonstrated that signals of NowGFP and EGFP can be clearly distinguished by fluorescence lifetime in various models, including mammalian cells, mouse tumor xenograft, and Drosophila larvae. NowGFP thus provides an additional channel for multiparameter fluorescence lifetime imaging microscopy of green fluorescent proteins.

  2. Bilan D.S., Pase L., Joosen L., Gorokhovatsky A.Y., Ermakova Y.G., Gadella T.W., Grabher C., Schultz C., Lukyanov S., Belousov V.V. (2013). HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8 (3), 535–42 [+]

    High-performance sensors for reactive oxygen species are instrumental to monitor dynamic events in cells and organisms. Here, we present HyPer-3, a genetically encoded fluorescent indicator for intracellular H2O2 exhibiting improved performance with respect to response time and speed. HyPer-3 has an expanded dynamic range compared to HyPer and significantly faster oxidation/reduction dynamics compared to HyPer-2. We demonstrate this performance by in vivo imaging of tissue-scale H2O2 gradients in zebrafish larvae. Moreover, HyPer-3 was successfully employed for single-wavelength fluorescent lifetime imaging of H2O2 levels both in vitro and in vivo.

  3. Shemiakina I.I., Ermakova G.V., Cranfill P.J., Baird M.A., Evans R.A., Souslova E.A., Staroverov D.B., Gorokhovatsky A.Y., Putintseva E.V., Gorodnicheva T.V., Chepurnykh T.V., Strukova L., Lukyanov S., Zaraisky A.G., Davidson M.W., Chudakov D.M., Shcherbo D. (2012). A monomeric red fluorescent protein with low cytotoxicity. Nat Commun 3, 1204 [+]

    Multicolour labelling with fluorescent proteins is frequently used to differentially highlight specific structures in living systems. Labelling with fusion proteins is particularly demanding and is still problematic with the currently available palette of fluorescent proteins that emit in the red range due to unsuitable subcellular localization, protein-induced toxicity and low levels of labelling efficiency. Here we report a new monomeric red fluorescent protein, called FusionRed, which demonstrates both high efficiency in fusions and low toxicity in living cells and tissues.

  4. Markvicheva K.N., Bilan D.S., Mishina N.M., Gorokhovatsky A.Y., Vinokurov L.M., Lukyanov S., Belousov V.V. (2011). A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg. Med. Chem. 19 (3), 1079–84 [+]

    Hydrogen peroxide is an important second messenger controlling intracellular signaling cascades by selective oxidation of redox active thiolates in proteins. Changes in intracellular [H(2)O(2)] can be tracked in real time using HyPer, a ratiometric genetically encoded fluorescent probe. Although HyPer is sensitive and selective for H(2)O(2) due to the properties of its sensing domain derived from the Escherichia coli OxyR protein, many applications may benefit from an improvement of the indicator's dynamic range. We here report HyPer-2, a probe that fills this demand. Upon saturating [H(2)O(2)] exposure, HyPer-2 undergoes an up to sixfold increase of the ratio F500/F420 versus a threefold change in HyPer. HyPer-2 was generated by a single point mutation A406V from HyPer corresponding to A233V in wtOxyR. This mutation was previously shown to destabilize interface between monomers in OxyR dimers. However, in HyPer-2, the A233V mutation stabilizes the dimer and expands the dynamic range of the probe.