Царькова Александра Сергеевна

Избранные публикации

  1. Мамонтова А.В., Григорьев А.П., Царькова А.С., Лукьянов К.А., Богданов А.М. (2017). БОРЬБА ЗА ФОТОСТАБИЛЬНОСТЬ: МЕХАНИЗМЫ ОБЕСЦВЕЧИВАНИЯ ФЛУОРЕСЦЕНТНЫХ БЕЛКОВ. Биоорг. хим. 43 (6), 598–607 [+]

    Современная биологическая наука нуждается в визуализации исследуемых объектов на уровнях клетки, органелл и отдельных молекул. Заметное место среди способов визуализации занимают методы, основанные на регистрации флуоресценции флуорофоров, которыми помечены объекты исследования. Флуоресцентные белки (ФБ) весьма популярны в качестве генетически кодируемых флуоресцентных меток для прижизенной визуализации целевых структур и процессов в живых системах. Одной из ключевых характеристик ФБ является их фотостабильность, т.е. устойчивость к фотохимическим реакциям, приводящим к исчезновению флуоресцентного сигнала. В данном обзоре описаны известные на данный момент молекулярные механизмы, лежащие в основе фотообесцвечивания, и методы, применяемые для улучшения фотостабильности флуоресцентных белков

  2. Tsarkova A.S., Kaskova Z.M., Yampolsky I.V. (2016). A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems. Acc. Chem. Res. 49 (11), 2372–2380 [+]

    Bioluminescence, the ability of a living organism to produce light through a chemical reaction, is one of Nature's most amazing phenomena widely spread among marine and terrestrial species. There are various different mechanisms underlying the emission of "cold light", but all involve a small molecule, luciferin, that provides energy for light-generation upon oxidation, and a protein, luciferase, that catalyzes the reaction. Different species often use different proteins and substrates in the process, which suggests that the ability to produce light evolved independently several times throughout evolution. Currently, it is estimated that there are more than 30 different mechanisms of bioluminescence. Even though the chemical foundation underlying the bioluminescence phenomenon is by now generally understood, only a handful of luciferins have been isolated and characterized. Today, the known bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. A pressing need for new bioluminescent analytical techniques with a wider range of practical applications stimulates the search and chemical studies of new bioluminescent systems. In the past few years two such systems were unraveled: those of the earthworms Fridericia heliota and the higher fungi. The luciferins of these two systems do not share structural similarity with the previously known ones. This Account will survey structure elucidation of the novel luciferins and identification of their mechanisms of action. Fridericia luciferin is a key component of a novel ATP-dependent bioluminescence system. Structural studies were performed on 0.005 mg of natural substance and revealed its unusual extensively modified peptidic nature. Elucidation of Fridericia oxyluciferin revealed that oxidative decarboxylation of a lysine fragment of luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as a light emitter. Along with luciferin, a number of its natural analogs were found in the extracts of worm biomass. They occurred to be highly unusual modified peptides comprising a set of amino acids, including threonine, aminobutyric acid, homoarginine, unsymmetrical N,N-dimethylarginine and extensively modified tyrosine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and raise novel questions concerning their biosynthetic origin. Also in this Account we discuss identification of the luciferin of higher fungi 3-hydroxyhispidin which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  3. Kaskova Z.M., Tsarkova A.S., Yampolsky I.V. (2016). 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc.Rev. 45, 6048–6077 [+]

    Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of D-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.

  4. Tsarkova A.S., Dubinnyi M.A., Baranov M.S., Oguienko A.D., Yampolsky I.V. (2016). Nambiscalarane, a novel sesterterpenoid comprising a furan ring, and other secondary metabolites from bioluminescent fungus Neonothopanus nambi. Mend. Comm. 26 (3), 191–192 [+]

    In the course of isolation of fungal luciferin from bioluminescent fungus Neonothopanus nambi, structures of novel nambiscalarane, Aurisin Z, trans-α-hydroxy-γ-phenylbutyrolactone, methyl 4-butyramidobenzoate as well as known nambinones A and C and polyhydroxylated sterol were identified.

  5. Purtov K.V., Petushkov V.N., Baranov M.S., Mineev K.S., Rodionova N.S., Kaskova Z.M., Tsarkova A.S., Petunin A.I., Bondar V.S., Rodicheva E.K., Medvedeva S.E., Oba Y., Arseniev A.S., Lukyanov S., Gitelson J.I., Yampolsky I.V. (2015). The Chemical Basis of Fungal Bioluminescence. Angew. Chem. Int. Ed. 127 (28), 8242–8246 [+]

    Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  6. Dubinnyi M.A., Kaskova Z.M., Rodionova N.S., Baranov M.S., Gorokhovatsky A.Y., Kotlobay A., Solntsev K.M., Tsarkova A.S., Petushkov V.N., Yampolsky I.V. (2015). Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of Fridericia Luciferin. Angew. Chem. Int. Ed. Engl. 54 (24), 7065–7067 [+]

    A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature. Oxidative decarboxylation of a lysine fragment of the luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as the light emitter.

  7. Dubinnyi M.A., Tsarkova A.S., Petushkov V.N., Kaskova Z.M., Rodionova N.S., Kovalchuk S.I., Ziganshin R.H., Baranov M.S., Mineev K.S., Yampolsky I.V. (2015). Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent Earthworm Fridericia heliota. Chem. Eur. J. 21 (10), 3942–3947 [+]

    Пресс-релиз по теме статьи Новый класс природных пептидов: аналоги люциферина почвенного червя Fridericia heliota

  8. Tsarkova A.S., Dubinnyi M.A., Baranov M.S., Petushkov N., Rodionova S., Zagudaylova B., Yampolsky I.V. (2015). Total synthesis of AsLn2 – a luciferin analogue from the Siberian bioluminescent earthworm Fridericia heliota. Mendeleev Communications 25 (2), 99–100 [+]

    Total synthesis of AsLn2, a luciferin analogue isolated from the Siberian bioluminescent earthworm F. heliota, was performed from (Z)-5-(2,3-dimethoxy-3-oxoprop-1-en-1-yl)-2-hydroxybenzoic acid in six steps.

  9. Petushkov V.N., Dubinnyi M.A., Tsarkova A.S., Rodionova N.S., Baranov M.S., Kublitski V.S., Shimomura O., Yampolsky I.V. (2014). A Novel Type of Luciferin from the Siberian Luminous Earthworm Fridericia heliota: Structure Elucidation by Spectral Studies and Total Synthesis. Angew. Chem. Int. Ed. Engl. 53 (22), 5566–5568 [+]

    Пресс-релиз по материалам этой статьи: "Восьмая формула света".

  10. Petushkov V.N., Tsarkova A.S., Dubinnyi M.A., Rodionova N.S., Marques S.M., EstevesdaSilva J.C.G., Shimomura O., Yampolsky I.V. (2014). CompX, a luciferin-related tyrosine derivative from the bioluminescent earthworm Fridericia heliota. Tetrahedron Lett. 55 (2), 460–462 ID:1040