Британова Ольга Владимировна

Кандидат биологических наук


Старший научный сотрудник (Лаборатория геномики адаптивного иммунитета)

Тел.: +7 (499) 742-81-22

Эл. почта: obritan@gmail.com

Избранные публикации

  1. Mamedov I.Z., Britanova O.V., Chkalina A.V., Staroverov D.B., Amosova A.L., Mishin A.S., Kurnikova M.A., Zvyagin I.V., Mutovina Z.Y., Gordeev A.V., Khaidukov S.V., Sharonov G.V., Shagin D.A., Chudakov D.M., Lebedev Y.B. (2009). Individual characterization of stably expanded T cell clones in ankylosing spondylitis patients. Autoimmunity 42 (6), 525–36 [+]

    Ankylosing spondylitis (AS) is commonly characterized by clonal expansions of T cells. However, these clonal populations are poorly studied and their role in disease initiation and progression remains unclear. Here, we performed mass sequencing of TCR V beta libraries to search for the expanded T cell clones for two AS patients. A number of clones comprising more than 5% of the corresponding TCR V beta family were identified in both patients. For the first time, expanded clones were shown to be stably abundant in blood samples of AS patients for the prolonged period (1.5 and 2.5 years for two patients, correspondingly). These clones were individually characterized in respect to their differentiation status using fluorescent cell sorting with CD27, CD28, and CD45RA markers followed by quantitative identification of each clone within corresponding fraction using real time PCR analysis. Stable clones differed in phenotype and several were shown to belong to the proinflammatory CD27 - /CD28 - population. Their potentially cytotoxic status was confirmed by staining with perforin-specific antibodies. Search for the TCR V beta CRD3 sequences homologous to the identified clones revealed close matches with the previously reported T cell clones from AS and reactive arthritis patients, thus supporting their role in the disease and proposing consensus TCR V beta CDR3 motifs for AS. Interestingly, these motifs were also found to have homology with earlier reported virus-specific CDR3 variants, indicating that viral infections could play role in development of AS.

    ID:276
  2. Britanova O., de Juan Romero C., Cheung A., Kwan K.Y., Schwark M., Gyorgy A., Vogel T., Akopov S., Mitkovski M., Agoston D., Sestan N., Molnár Z., Tarabykin V. (2008). Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57 (3), 378–92 [+]

    Изучалась биологическая роль транскрипционного фактора SATB2 в развитии коры головного мозга мыши. Было показано, что направление клеточной дифференцировки может регулироваться на постмитотическом уровне. Так, SATB2 в постмитотических нейронах контролирует запуск генетической программы, определяющей клеточный фенотип верхних, а не глубоких слоев коры головного мозга. При нарушении экспрессии SATB2 клетки верхних слоев приобретают свойства глубоких слоев.

    ID:30
  3. Bulina M.E., Lukyanov K.A., Britanova O.V., Onichtchouk D., Lukyanov S., Chudakov D.M. (2006). Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc 1 (2), 947–53 [+]

    The phototoxic red fluorescent GFP-like protein KillerRed has recently been described. The phototoxicity of KillerRed exceeds that of EGFP by at least 1,000-fold, making it the first fully genetically encoded photosensitizer. KillerRed opens up new possibilities for precise light-induced cell killing and target protein inactivation. Because KillerRed is encoded by a gene, it can be expressed in a spatially and temporally regulated manner, under a chosen promoter, and fused with the desired protein of interest or localization signal. Here we provide a protocol for target protein inactivation in cell culture using KillerRed. As KillerRed is a new tool, the protocol focuses on aspects that will allow users to maximize the potential of this protein, guiding the design of chimeric constructs, recommended control experiments and preferred illumination parameters. The protocol, which describes target protein visualization and subsequent inactivation, is a 2- or 3-d procedure.

    ID:279
  4. Bulina M.E., Chudakov D.M., Britanova O.V., Yanushevich Y.G., Staroverov D.B., Chepurnykh T.V., Merzlyak E.M., Shkrob M.A., Lukyanov S., Lukyanov K.A. (2006). A genetically encoded photosensitizer. Nat. Biotechnol. 24 (1), 95–9 [+]

    Photosensitizers are chromophores that generate reactive oxygen species (ROS) upon light irradiation. They are used for inactivation of specific proteins by chromophore-assisted light inactivation (CALI) and for light-induced cell killing in photodynamic therapy. Here we report a genetically encoded photosensitizer, which we call KillerRed, developed from the hydrozoan chromoprotein anm2CP, a homolog of green fluorescent protein (GFP). KillerRed generates ROS upon irradiation with green light. Whereas known photosensitizers must be added to living systems exogenously, KillerRed is fully genetically encoded. We demonstrate the utility of KillerRed for light-induced killing of Escherichia coli and eukaryotic cells and for inactivating fusions to beta-galactosidase and phospholipase Cdelta1 pleckstrin homology domain.

    ID:283