Тузиков Александр Борисович

Кандидат химических наук

Старший научный сотрудник (Лаборатория углеводов)

Эл. почта: tuzikov@carb.ibch.ru

Избранные публикации

  1. Саблина М.А., Тузиков А.Б., Овчинникова Т.В., Михура И.В., Бовин Н.В. (2015). Синтез моно- и ди-О-сульфатов спейсерированной лактозы. Известия Академии наук. Серия Химическая.  (5), 1125–1133 ID:1371
  2. Pazynina G., Sablina M., Mayzel M., Nasonov V., Tuzikov A., Bovin N. (2009). Chemical synthesis of 6(GlcNAc)- and 6(Gal)-O-sulfated SiaLe(X) tetrasaccharides in spacer-armed form. Glycobiology 19 (10), 1078–81 [+]

    Practical synthesis of tetrasaccharide sulfates, 6((GlcNAc))-O-Su-SiaLe(X)-OCH(2)CH(2)CH(2)NH(2) and 6((Gal))-O-Su-SiaLe(X)-OCH(2)CH(2)CH(2)NH(2) (Su( )SO(3)H), selectin ligands, and leu- kocyte trafficking agents is presented. Both sulfates were synthesized starting from the same precursor, protected SiaLe(x), by the conventional procedures of carbohydrate chemistry. The sulfated SiaLe(x) derivative was modified at the spacer group to give 6((Gal))-O-Su-SiaLe(x)- OCH(2)CH(2)CH(2)NH-COCH(2)CH(2)C[triple bond]CH, convenient for "click chemistry" mode conjugation with an azido carrier, particularly, for the synthesis of an immunogen.

  3. Huflejt M.E., Vuskovic M., Vasiliu D., Xu H., Obukhova P., Shilova N., Tuzikov A., Galanina O., Arun B., Lu K., Bovin N. (2009). Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol. Immunol. 46 (15), 3037–49 [+]

    We have used microchip format glycan array to characterize the individual carbohydrate recognition patterns by antibodies (Ab) in sera of 106 healthy donors. The glycan library included blood group antigens and other most frequent terminal oligosaccharides and their cores of mammalian N- and O-linked glycoproteins and glycolipids, tumor-associated carbohydrate antigens, and common components of bacterial/pathogenic polysaccharides and lipopolysaccharides, totally 205 glycans. The serum Ab interacted with at least 50 normal human glyco-motifs. Apart from expected blood group-, xeno- (heterophil) and infection-related binding activities, we observed a number of new and unexpected features. The surprising, relatively high antibody binding was found to the blood group P(1) and P(k) trisaccharides and H(type 2) trisaccharide. Novel and very high binding activities have been observed towards Galbeta1-3GlcNAc (Le(C)) related glycans, especially 3'-O-Su-Le(C), and towards 4'-O-sulfated lactosamine. Relatively high and uniform Ab binding to GalNAcalpha1-3Gal disaccharide demonstrated absence of correlation with fucosylated blood group A GalNAcalpha1-3(Fucalpha1-2)Gal antigen-similarly to well known relationship between Galalpha1-3Gal and true, fucosylated blood group B Galalpha1-3(Fucalpha1-2)Gal antigen. The binding intensity to Galalpha1-3Galbeta1-4GlcNAc xenoantigen was shown to be rather modest. Absence or very low Ab binding was found against oligosialic acid, sialooligosaccharides except SiaT(n), type 2 backbone glycans such as Le(y), and biantennary N-chain as well as its truncated forms, i.e. without terminal Sia, SiaGal, and SiaGalGlcNAc motifs. We have also found that Ab are capable of recognizing the short inner core typical for glycolipids (-Galbeta1-4Glc) and glycoproteins (-GalNAcalpha) as a fragment of bigger glycans.

  4. Vodovozova E.L., Pazynina G.V., Tuzikov A.B., Grechishnikova I.V., Molotkovsky J.G. (2009). Synthesis of photoreactive inorganic probes--instruments for studying membrane lectins. Bioorg. Khim. 30 (2), 174–81 [+]

    A method for the synthesis of photoaffinity neoglycolipid probes with a highly efficient carbene-generating diazocyclopentadien-2-ylcarbonyl (Dcp) label, which can be radioiodinated under standard oxidation conditions, was developed. The probes are intended for incorporation into the lipid bilayer. They are lipophilic glycoconjugates on the basis of an amphiphilic aglycone built up from a diacylglycerol and a polyethylene glycol spacer (with a polymerization degree of 9-16) bearing the Dcp label at the terminal unit. The location of the label in the aglycone provides the possibility of one-step preparation of a wide range of probes using various carbohydrate synthons. We have synthesized photoaffinity neoglycoconjugates containing the oligosaccharides: sialyl LewisX tetrasaccharide and A trisaccharide, which is specific to some tumor cells. A probe containing an inactive pentaol (aminodeoxyglucitol) was also synthesized to detect nonspecific binding. The Dcp label is bound to the probe molecule by ester bond; its lability under alkaline conditions facilitates the analysis of cross-linked products after photoaffinity labeling. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.

  5. Bovin N.V., Tuzikov A.B., Chinarev A.A. (2008). Oligoglycines: Materials with unlimited potential for nanotechnologies. Nanotechnologies in Russia 3 (5-6), 48–61 ID:241
  6. Gambaryan A.S., Boravleva E.Y., Matrosovich T.Y., Matrosovich M.N., Klenk H.D., Moiseeva E.V., Tuzikov A.B., Chinarev A.A., Pazynina G.V., Bovin N.V. (2005). Polymer-bound 6' sialyl-N-acetyllactosamine protects mice infected by influenza virus. Antiviral Res. 68 (3), 116–23 [+]

    To develop a mouse model for testing receptor attachment inhibitors of human influenza viruses, the human clinical virus isolate in MDCK cells A/NIB/23/89M (H1N1) was adapted to mice by serial passaging through mouse lungs. The adaptation enhanced the viral pathogenicity for mice, but preserved the virus receptor binding phenotype, preferential binding to 2-6-linked sialic acid receptors and low affinity for 2-3-linked receptors. Sequencing of the HA gene of the mouse-adapted virus A/NIB/23/89-MA revealed a loss of the glycosylation sites in positions 94 and 163 of HA1 and substitutions 275Asp-->Gly in HA1 and 145Asn-->Asp in HA2. The four mouse strains tested differed significantly in their sensitivity to A/NIB/23/89-MA with the sensitivity increasing in the order of BALB/cJCitMoise, C57BL/6LacSto, CBA/CaLacSto and A/SnJCitMoise strains. Testing of protective efficacy of the polyacrylamide conjugate bearing Neu5Acalpha2-6Galbeta1-4GlcNAc trisaccharide under conditions of lethal or sublethal virus infection demonstrated a strong protective effect of this preparation. In particular, aerosol treatment of mice with the polymeric attachment inhibitor on 24-110 h after infection completely prevented mortality in sensitive animals and lessened disease symptoms in more resistant mouse strains.

  7. Gambaryan A.S., Tuzikov A.B., Pazynina G.V., Webster R.G., Matrosovich M.N., Bovin N.V. (2004). H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO3)GlcNAc-containing receptors. Virology 326 (2), 310–6 [+]

    To characterize differences in the receptor-binding specificity of H5N1 chicken viruses and viruses of aquatic birds, we used a panel of synthetic polyacrylamide (PAA)-based sialylglycopolymers that carried identical terminal Neu5Acalpha2-3Gal fragments but varied by the structure of the next saccharide residues. A majority of duck viruses irrespective of their HA subtype, bound with the highest affinity to trisaccharide Neu5Acalpha2-3Galbeta1-3GlcNAc, suggesting that these viruses preferentially recognize sialyloligosaccharide receptors with type 1 core (Galbeta1-3GlcNAc). Substitution of 6-hydroxyl group of GlcNAc residue of tested sialylglycopolymers by 6-sulfo group had little effect on receptor binding by duck viruses. By contrast, H5N1 chicken and human viruses isolated in 1997 in Hong Kong preferred receptors with type 2 core (Galbeta1-4GlcNAcbeta) and bound sulfated trisaccharide Neu5Acalpha2-3Galbeta1-4(6-HSO3)GlcNAcbeta (6-Su-3'SLN) with the extraordinary high affinity. Another chicken virus, A/FPV/Rostok/34 (H7N1), and several mammalian viruses also displayed an increased affinity for sulfated sialyloligosaccharide receptor. The binding of chicken and mammalian viruses to tracheal epithelial cells of green monkey decreased after treatment of cells with glucosamine-6-sulfatase suggesting the presence of 6-O-Su-3'SLN determinants in the airway epithelium. It remains to be seen whether existence of the 6-O-Su-3'SLN groups in the human airway epithelial cells might facilitate infection of humans with H5N1 chicken viruses.

  8. Bovin N.V., Tuzikov A.B., Chinarev A.A., Gambaryan A.S. (2004). Multimeric glycotherapeutics: new paradigm. Glycoconj. J. 21 (8-9), 471–8 [+]

    The general principle of anti-adhesion therapy is the inhibition of microorganism adhesion to the host cell with the help of a soluble receptor analog. Despite an evident attractiveness of the concept and its long existence, the therapeutics of the 'post-antibiotic era' have not yet appeared. This can be explained by the contradictoriness of requirements for anti-adhesion drugs: to be efficient a drug must be multivalent, i.e. large molecule, but to obtain FDA approval it should be a small molecule. A way to overcome this contradiction is self-assembly of glycopeptides. The carbohydrate part of glycopeptide is responsible for binding with the lectin of microorganisms, whereas a simple peptide part is responsible for an association to the so-called tectomers. Depending on the structure, tectomers are formed either spontaneously or upon promotion of a microorganism. In particular, sialopeptide, which is capable of converting to a tectomer only in the presence of the influenza virus, has been obtained. Thus, the new strategy of anti-adhesion therapy can be formulated as follows: (1) identification of oligosaccharide-receptor for a particular virus (bacteria); (2) optimization of the peptide part; (3) conventional trials. The expected advantages of this strategy are the following: (i) no polymer; (ii) a virion completely covered with a tectomer, i.e. blocking is both complete and irreversible; (iii) rapid and rational lead identification and optimization; (iv) minimum side effects; (v) potential for microorganism resistance to natural receptor is lower than in the case of mimetics.

  9. Tuzikov A.B., Chinarev A.A., Gambaryan A.S., Oleinikov V.A., Klinov D.V., Matsko N.B., Kadykov V.A., Ermishov M.A., Demin I.V., Demin V.V., Rye P.D., Bovin N.V. (2003). Polyglycine II nanosheets: supramolecular antivirals? Chembiochem 4 (2-3), 147–54 [+]

    Tetraantennary peptides [glycine(n)-NHCH(2)](4)C can form stable noncovalent structures by self-assembly through intermolecular hydrogen bonding. The oligopeptide chains assemble as polyglycine II to yield submicron-sized, flat, one-molecule-thick sheets. Attachment of alpha-N-acetylneuraminic acid (Neu5Acalpha) to the terminal glycine residues gives rise to water-soluble assembled glycopeptides that are able to bind influenza virus multivalently and inhibit adhesion of the virus to cells 10(3)-fold more effectively than a monomeric glycoside of Neu5Acalpha. Another antiviral strategy based on virus-promoted assembly of the glycopeptides was also demonstrated. Consequently, the self-assembly principle offers new perspectives on the design of multivalent antivirals.