Шулепко Михаил Анатольевич

Избранные публикации

  1. Dubovskii P.V., Dubinnyi M.A., Konshina A.G., Kazakova E.D., Sorokoumova G.M., Ilyasova T.M., Shulepko M.A., Chertkova R.V., Lyukmanova E.N., Dolgikh D.A., Arseniev A.S., Efremov R.G. (2017). Structural and Dynamic "Portraits" of Recombinant and Native Cytotoxin I from Naja oxiana: How Close Are They? Biochemistry 56 (34), 4468–4477 [+]

    Today, recombinant proteins are quite widely used in biomedical and biotechnological applications. At the same time, the question about their full equivalence to the native analogues remains unanswered. To gain additional insight into this problem, intimate atomistic details of a relatively simple protein, small and structurally rigid recombinant cardiotoxin I (CTI) from cobra Naja oxiana venom, were characterized using nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations in water. Compared to the natural protein, it contains an additional Met residue at the N-terminus. In this work, the NMR-derived spatial structure of uniformly (13)C- and (15)N-labeled CTI and its dynamic behavior were investigated and subjected to comparative analysis with the corresponding data for the native toxin. The differences were found in dihedral angles of only a single residue, adjacent to the N-terminal methionine. Microsecond-long MD traces of the toxins reveal an increased flexibility in the residues spatially close to the N-Met. As the detected structural and dynamic changes of the two CTI models do not result in substantial differences in their cytotoxicities, we assume that the recombinant protein can be used for many purposes as a reasonable surrogate of the native one. In addition, we discuss general features of the spatial organization of cytotoxins, implied by the results of the current combined NMR and MD study.

  2. Paramonov A.S., Lyukmanova E.N., Myshkin M.Y., Shulepko M.A., Kulbatskii D.S., Petrosian N.S., Chugunov A.O., Dolgikh D.A., Kirpichnikov M.P., Arseniev A.S., Shenkarev Z.O. (2017). NMR investigation of the isolated second voltage-sensing domain of human Nav1.4 channel. Biochim. Biophys. Acta 1859 (3), 493–506 [+]

    Voltage-gated Na(+) channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na(+) channel consists of ~2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na(+) channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (~150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of (13)C,(15)N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na(+) channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 310-helical conformation. Water accessibility of S3 helix, observed by the Mn(2+) titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. (15)N relaxation data revealed characteristic pattern of μs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K(+) channels. These results validate structural studies of isolated VSDs of Na(+) channels and show possible pitfalls in application of this 'divide and conquer' approach.

  3. Shulepko M.A., Lyukmanova E.N., Shenkarev Z.O., Dubovskii P.V., Astapova M.V., Feofanov A.V., Arseniev A.S., Utkin Y.N., Kirpichnikov M.P., Dolgikh D.A. (2016). Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana. Protein Expr. Purif. 130, 13–20 [+]

    Cytotoxins or cardiotoxins is a group of polycationic toxins from cobra venom belonging to the 'three-finger' protein superfamily (Ly6/uPAR family) which includes small β-structural proteins (60-90 residues) with high disulfide bond content (4-5 disulfides). Due to a high cytotoxic activity for cancer cells, cytotoxins are considered as potential anticancer agents. Development of the high-throughput production methods is required for the prospective applications of cytotoxins. Here, efficient approach for bacterial production of recombinant analogue of cytotoxin I from N. oxiana containing additional N-terminal Met-residue (rCTX1) was developed. rCTX1 was produced in the form of E. coli inclusion bodies. Refolding in optimized conditions provided ∼6 mg of correctly folded protein from 1 L of bacterial culture. Cytotoxicity of rCTX1 for C6 rat glioma cells was found to be similar to the activity of wild type CTX1. The milligram quantities of (13)C,(15)N-labeled rCTX1 were obtained. NMR study confirmed the similarity of the spatial structures of recombinant and wild-type toxins. Additional Met residue does not perturb the overall structure of the three-finger core. The analysis of available data for different Ly6/uPAR proteins of snake and human origin revealed that efficiency of their folding in vitro is correlated with the number of proline residues in the third loop and the surface area of hydrophobic residues buried within the protein interior. The obtained data indicate that hydrophobic core is important for the folding of proteins with high disulfide bond content. Developed expression method opens new possibilities for structure-function studies of CTX1 and other related three-finger proteins.

  4. Thomsen M.S., Arvaniti M., Jensen M.M., Shulepko M.A., Dolgikh D.A., Pinborg L.H., Härtig W., Lyukmanova E.N., Mikkelsen J.D. (2016). Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes. Neurobiol. Aging 46, 13–21 [+]

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1-42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1-42-induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease.

  5. Lyukmanova E.N., Shulepko M.A., Shenkarev Z.O., Kasheverov I.E., Chugunov A.O., Kulbatskii D.S., Myshkin M.Y., Utkin Y.N., Efremov R.G., Tsetlin V.I., Arseniev A.S., Kirpichnikov M.P., Dolgikh D.A. (2016). Central loop of non-conventional toxin WTX from Naja kaouthia is important for interaction with nicotinic acetylcholine receptors. Toxicon 119, 274–9 [+]

    'Three-finger' toxin WTX from Naja kaouthia interacts with nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Mutagenesis and competition experiments with (125)I-α-bungarotoxin revealed that Arg31 and Arg32 residues from the WTX loop II are important for binding to Torpedo californica and human α7 nAChRs. Computer modeling suggested that loop II occupies the orthosteric binding site at α7 nAChR. The similar toxin interface was previously described as a major determinant of allosteric interactions with mAChRs.

  6. Lyukmanova E.N., Shulepko M.A., Shenkarev Z.O., Bychkov M.L., Paramonov A.S., Chugunov A.O., Kulbatskii D.S., Arvaniti M., Dolejsi E., Schaer T., Arseniev A.S., Efremov R.G., Thomsen M.S., Dolezal V., Bertrand D., Dolgikh D.A., Kirpichnikov M.P. (2016). Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep 6, 30698 [+]

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a 'three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the 'classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  7. Lyukmanova E.N., Shulepko M.A., Kudryavtsev D., Bychkov M.L., Kulbatskii D.S., Kasheverov I.E., Astapova M.V., Feofanov A.V., Thomsen M.S., Mikkelsen J.D., Shenkarev Z.O., Tsetlin V.I., Dolgikh D.A., Kirpichnikov M.P. (2016). Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLoS ONE 11 (2), e0149733 [+]

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,-non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that the antiproliferative activity of SLURP-1 is related to 'metabotropic' signaling pathway through α7-nAChR, that activates intracellular signaling cascades without opening the receptor channel.

  8. Lyukmanova E.N., Shenkarev Z.O., Shulepko M.A., Paramonov A.S., Chugunov A.O., Janickova H., Dolejsi E., Dolezal V., Utkin Y.N., Tsetlin V.I., Arseniev A.S., Efremov R.G., Dolgikh D.A., Kirpichnikov M.P. (2015). Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. J. Biol. Chem. 290 (39), 23616–30 [+]

    Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.

  9. Thomsen M.S., Cinar B., Jensen M.M., Lyukmanova E.N., Shulepko M.A., Tsetlin V., Klein A.B., Mikkelsen J.D. (2014). Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated. Brain Struct Funct 219 (6), 1923–34 [+]

    The Ly-6 superfamily of proteins, which affects diverse processes in the immune system, has attracted renewed attention due to the ability of some Ly-6 proteins to bind to and modulate the function of neuronal nicotinic acetylcholine receptors (nAChRs). However, there is a scarcity of knowledge regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic compartments. We further estimate the amount of Lynx1 in the rat cortex using known amounts of a heterologously expressed soluble Lynx1 variant (ws-Lynx1) to be approximately 8.6 ng/μg total protein, which is in line with the concentrations of ws-Lynx1 required to affect nAChR function. In addition, we demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development in the rat frontal cortex and hippocampus at the mRNA and protein level, and that this is paralleled to some degree by the expression of the nAChR subunits α2, α4, α7 and β2. Our results demonstrate a developmental pattern, localization, and concentration of Ly-6 proteins in the brain, which support a role for these proteins in the modulation of signaling at synaptic membranes.

  10. Lyukmanova E.N., Shulepko M.A., Bychkov M.L., Shenkarev Z.O., Paramonov A.S., Chugunov A.O., Arseniev A.S., Dolgikh D.A., Kirpichnikov M.P. (2014). Human SLURP-1 and SLURP-2 Proteins Acting on Nicotinic Acetylcholine Receptors Reduce Proliferation of Human Colorectal Adenocarcinoma HT-29 Cells. Acta Naturae 6 (4), 60–6 [+]

    Human secreted Ly-6/uPAR related proteins (SLURP-1 and SLURP-2) are produced by various cells, including the epithelium and immune system. These proteins act as autocrine/paracrine hormones regulating the growth and differentiation of keratinocytes and are also involved in the control of inflammation and malignant cell transformation. These effects are assumed to be mediated by the interactions of SLURP-1 and SLURP-2 with the α7 and α3β2 subtypes of nicotinic acetylcholine receptors (nAChRs), respectively. Available knowledge about the molecular mechanism underling the SLURP-1 and SLURP-2 effects is very limited. SLURP-2 remains one of the most poorly studied proteins of the Ly-6/uPAR family. In this study, we designed for the first time a bacterial system for SLURP-2 expression and a protocol for refolding of the protein from cytoplasmic inclusion bodies. Milligram quantities of recombinant SLURP-2 and its 13C-15N-labeled analog were obtained. The recombinant protein was characterized by NMR spectroscopy, and a structural model was developed. A comparative study of the SLURP-1 and SLURP-2 effects on the epithelial cell growth was conducted using human colorectal adenocarcinoma HT-29 cells, which express only α7-nAChRs. A pronounced antiproliferative effect of both proteins was observed. Incubation of cells with 1 μM SLURP-1 and 1 μM SLURP-2 during 48 h led to a reduction in the cell number down to ~ 54 and 63% relative to the control, respectively. Fluorescent microscopy did not reveal either apoptotic or necrotic cell death. An analysis of the dose-response curve revealed the concentration-dependent mode of the SLURP-1 and SLURP-2 action with EC50 ~ 0.1 and 0.2 nM, respectively. These findings suggest that the α7-nAChR is the main receptor responsible for the antiproliferative effect of SLURP proteins in epithelial cells.

  11. Manni S., Mineev K.S., Usmanova D., Lyukmanova E.N., Shulepko M.A., Kirpichnikov M.P., Winter J., Matkovic M., Deupi X., Arseniev A.S., BallmerHofer K. (2014). Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation. Structure 22 (8), 1077–89 [+]

    Transmembrane signaling by receptor tyrosine kinases (RTKs) entails ligand-mediated dimerization and structural rearrangement of the extracellular domains. RTK activation also depends on the specific orientation of the transmembrane domain (TMD) helices, as suggested by pathogenic, constitutively active RTK mutants. Such mutant TMDs carry polar amino acids promoting stable transmembrane helix dimerization, which is essential for kinase activation. We investigated the effect of polar amino acids introduced into the TMD of vascular endothelial growth factor receptor 2, regulating blood vessel homeostasis. Two mutants showed constitutive kinase activity, suggesting that precise TMD orientation is mandatory for kinase activation. Nuclear magnetic resonance spectroscopy revealed that TMD helices in activated constructs were rotated by 180° relative to the interface of the wild-type conformation, confirming that ligand-mediated receptor activation indeed results from transmembrane helix rearrangement. A molecular dynamics simulation confirmed the transmembrane helix arrangement of wild-type and mutant TMDs revealed by nuclear magnetic resonance spectroscopy.

  12. Shenkarev Z.O., Lyukmanova E.N., Paramonov A.S., Panteleev P.V., Balandin S.V., Shulepko M.A., Mineev K.S., Ovchinnikova T.V., Kirpichnikov M.P., Arseniev A.S. (2014). Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides. Acta Naturae 6 (2), 84–94 [+]

    Lipid-protein nanodiscs (LPNs) are nanoscaled fragments of a lipid bilayer stabilized in solution by the apolipoprotein or a special membrane scaffold protein (MSP). In this work, the applicability of LPN-based membrane mimetics in the investigation of water-soluble membrane-active peptides was studied. It was shown that a pore-forming antimicrobial peptide arenicin-2 from marine lugworm (charge of +6) disintegrates LPNs containing both zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) lipids. In contrast, the spider toxin VSTx1 (charge of +3), a modifier of Kv channel gating, effectively binds to the LPNs containing anionic lipids (POPC/DOPG, 3 : 1) and does not cause their disruption. VSTx1 has a lower affinity to LPNs containing zwitterionic lipids (POPC), and it weakly interacts with the protein component of nanodiscs, MSP (charge of -6). The neurotoxin II (NTII, charge of +4) from cobra venom, an inhibitor of the nicotinic acetylcholine receptor, shows a comparatively low affinity to LPNs containing anionic lipids (POPC/DOPG, 3 : 1 or POPC/DOPS, 4 : 1), and it does not bind to LPNs/POPC. The obtained data show that NTII interacts with the LPN/POPC/DOPS surface in several orientations, and that the exchange process among complexes with different topologies proceeds fast on the NMR timescale. Only one of the possible NTII orientations allows for the previously proposed specific interaction between the toxin and the polar head group of phosphatidylserine from the receptor environment (Lesovoy et al., Biophys. J. 2009. V. 97. № 7. P. 2089-2097). These results indicate that LPNs can be used in structural and functional studies of water-soluble membrane-active peptides (probably except pore-forming ones) and in studies of the molecular mechanisms of peptide-membrane interaction.

  13. Mineev K.S., Lesovoy D.M., Usmanova D.R., Goncharuk S.A., Shulepko M.A., Lyukmanova E.N., Kirpichnikov M.P., Bocharov E.V., Arseniev A.S. (2013). NMR-based approach to measure the free energy of transmembrane helix-helix interactions. Biochim. Biophys. Acta 1838 (1PB), 164–172 [+]

    Knowledge of the energetic parameters of transmembrane helix-helix interactions is necessary for the establishment of a structure-energy relationship for α-helical membrane domains. A number of techniques have been developed to measure the free energies of dimerization and oligomerization of transmembrane α-helices, and all of these have their advantages and drawbacks. In this study we propose a methodology to determine the magnitudes of the free energy of interactions between transmembrane helices in detergent micelles. The suggested approach employs solution nuclear magnetic resonance (NMR) spectroscopy to determine the population of the oligomeric states of the transmembrane domains and introduces a new formalism to describe the oligomerization equilibrium, which is based on the assumption that both the dimerization of the transmembrane domains and the dissociation of the dimer can occur only upon the collision of detergent micelles. The technique has three major advantages compared with other existing approaches: it may be used to analyze both weak and relatively strong dimerization/oligomerization processes, it works well for the analysis of complex equilibria, e.g. when monomer, dimer and high-order oligomer populations are simultaneously present in the solution, and it can simultaneously yield both structural and energetic characteristics of the helix-helix interaction under study. The proposed methodology was applied to investigate the oligomerization process of transmembrane domains of fibroblast growth factor receptor 3 (FGFR3) and vascular endothelium growth factor receptor 2 (VEGFR2), and allowed the measurement of the free energy of dimerization of both of these objects. In addition the proposed method was able to describe the multi-state oligomerization process of the VEGFR2 transmembrane domain.

  14. Mineev K.S., Lyukmanova E.N., Krabben L., Serebryakova M.V., Shulepko M.A., Arseniev A.S., Kordyukova L.V., Veit M. (2013). Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Eng. Des. Sel. 26 (9), 547–52 [+]

    Hemagglutinin (HA), the trimeric spike of influenza virus, catalyzes fusion of viral and cellular membranes. We have synthesized the anchoring peptide including the linker, transmembrane region and cytoplasmic tail (HA-TMR-CT) in a cell-free system. Furthermore, to mimic the palmitoylation of three conserved cysteines within the CT, we chemically alkylated HA-TMR-CT using hexadecyl-methanethiosulfonate. While the nuclear magnetic resonance spectroscopy showed pure and refolded peptides, the formation of multiple oligomers of higher order impeded further structural analysis. Circular dichroism spectroscopy of both alkylated and non-alkylated HA-TMR-CT revealed an α-helical secondary structure. No major impact of the fatty acids on the secondary structure was detected.

  15. Lyukmanova E.N., Shulepko M.A., Buldakova S.L., Kasheverov I.E., Shenkarev Z.O., Reshetnikov R.V., Filkin S.Y., Kudryavtsev D.S., Ojomoko L.O., Kryukova E.V., Dolgikh D.A., Kirpichnikov M.P., Bregestovski P.D., Tsetlin V.I. (2013). Water-soluble LYNX1 residues important for interaction with muscle-type and/or neuronal nicotinic receptors. J. Biol. Chem. 288 (22), 15888–99 [+]
  16. Shulepko M.A., Lyukmanova E.N., Paramonov A.S., Lobas A.A., Shenkarev Z.O., Kasheverov I.E., Dolgikh D.A., Tsetlin V.I., Arseniev A.S., Kirpichnikov M.P. (2013). Human neuromodulator SLURP-1: bacterial expression, binding to muscle-type nicotinic acetylcholine receptor, secondary structure, and conformational heterogeneity in solution. Biochemistry Mosc. 78 (2), 204–11 [+]
  17. Shenkarev Z.O., Lyukmanova E.N., Butenko I.O., Petrovskaya L.E., Paramonov A.S., Shulepko M.A., Nekrasova O.V., Kirpichnikov M.P., Arseniev A.S. (2013). Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim. Biophys. Acta 1828 (2), 776–84 [+]

    Production of helical integral membrane proteins (IMPs) in a folded state is a necessary prerequisite for their functional and structural studies. In many cases large-scale expression of IMPs in cell-based and cell-free systems results in misfolded proteins, which should be refolded in vitro. Here using examples of the bacteriorhodopsin ESR from Exiguobacterium sibiricum and full-length homotetrameric K(+) channel KcsA from Streptomyces lividans we found that the efficient in vitro folding of the transmembrane domains of the polytopic and multimeric IMPs could be achieved during the protein encapsulation into the reconstructed high-density lipoprotein particles, also known as lipid-protein nanodiscs. In this case the self-assembly of the IMP/nanodisc complexes from a mixture containing apolipoprotein, lipids and the partially denatured protein solubilized in a harsh detergent induces the folding of the transmembrane domains. The obtained folding yields showed significant dependence on the properties of lipids used for nanodisc formation. The largest recovery of the spectroscopically active ESR (~60%) from the sodium dodecyl sulfate (SDS) was achieved in the nanodiscs containing anionic saturated lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPG) and was approximately twice lower in the zwitterionic DMPC lipid. The reassembly of tetrameric KcsA from the acid-dissociated monomer solubilized in SDS was the most efficient (~80%) in the nanodiscs containing zwitterionic unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The charged and saturated lipids provided lower tetramer quantities, and the lowest yield (<20%) was observed in DMPC. The overall yield of the ESR and KcsA folding was mainly restricted by the efficiency of the protein encapsulation into the nanodiscs.

  18. Lyukmanova E.N., Shenkarev Z.O., Khabibullina N.F., Kulbatskiy D.S., Shulepko M.A., Petrovskaya L.E., Arseniev A.S., Dolgikh D.A., Kirpichnikov M.P. (2012). N-terminal fusion tags for effective production of g-protein-coupled receptors in bacterial cell-free systems. Acta Naturae 4 (4), 58–64 [+]

    G-protein-coupled receptors (GPCR) constitute one of the biggest families of membrane proteins. In spite of the fact that they are highly relevant to pharmacy, they have remained poorly explored. One of the main bottlenecks encountered in structural-functional studies of GPCRs is the difficulty to produce sufficient amounts of the proteins. Cell-free systems based on bacterial extracts fromE. colicells attract much attention as an effective tool for recombinant production of membrane proteins. GPCR production in bacterial cell-free expression systems is often inefficient because of the problems associated with the low efficiency of the translation initiation process. This problem could be resolved if GPCRs were expressed in the form of hybrid proteins with N-terminal polypeptide fusion tags. In the present work, three new N-terminal fusion tags are proposed for cell-free production of the human β2-adrenergic receptor, human M1 muscarinic acetylcholine receptor, and human somatostatin receptor type 5. It is demonstrated that the application of an N-terminal fragment (6 a.a.) of bacteriorhodopsin fromExiguobacterium sibiricum(ESR-tag), N-terminal fragment (16 а.о.) of RNAse A (S-tag), and Mistic protein fromB. subtilisallows to increase the CF synthesis of the target GPCRs by 5-38 times, resulting in yields of 0.6-3.8 mg from 1 ml of the reaction mixture, which is sufficient for structural-functional studies.

  19. Lyukmanova E.N., Shenkarev Z.O., Khabibullina N.F., Kopeina G.S., Shulepko M.A., Paramonov A.S., Mineev K.S., Tikhonov R.V., Shingarova L.N., Petrovskaya L.E., Dolgikh D.A., Arseniev A.S., Kirpichnikov M.P. (2011). Lipid-protein nanodisks for cell-free production of integral membrane proteins in a soluble and folded state: Comparison with detergent micelles, bicelles and liposomes. Biochim. Biophys. Acta , [+]

    Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodisks (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodisks resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.

  20. Lyukmanova E.N., Shenkarev Z.O., Shulepko M.A., Mineev K.S., DHoedt D., Kasheverov I.E., Filkin S.Y., Krivolapova A.P., Janickova H., Dolezal V., Dolgikh D.A., Arseniev A.S., Bertrand D., Tsetlin V.I., Kirpichnikov M.P. (2011). NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286 (12), 10618–27 [+]

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.

  21. Шулепко М.А., Люкманова Е.Н., Кашеверов И.Е., Долгих Д.А., Цетлин В.И., Кирпичников М.П. (2011). Бактериальная продукция водорастворимого домена lynx1, - эндогенного нейромодулятора никотиновых рецепторов человека. Биоорг. хим. 37 (5), ID:449
  22. Lesovoy D.M., Bocharov E.V., Lyukmanova E.N., Kosinsky Y.A., Shulepko M.A., Dolgikh D.A., Kirpichnikov M.P., Efremov R.G., Arseniev A.S. (2009). Specific membrane binding of neurotoxin II can facilitate its delivery to acetylcholine receptor. Biophys. J. 97 (7), 2089–97 [+]

    The action of three-finger snake alpha-neurotoxins at their targets, nicotinic acetylcholine receptors (nAChR), is widely studied because of its biological and pharmacological relevance. Most such studies deal only with ligands and receptor models; however, for many ligand/receptor systems the membrane environment may affect ligand binding. In this work we focused on binding of short-chain alpha-neurotoxin II (NTII) from Naja oxiana to the native-like lipid bilayer, and the possible role played by the membrane in delivering the toxin to nAChR. Experimental (NMR and mutagenesis) and molecular modeling (molecular-dynamics simulation) studies revealed a specific interaction of the toxin molecule with the phosphatidylserine headgroup of lipids, resulting in the proper topology of NTII on lipid bilayers favoring the attack of nAChR. Analysis of short-chain alpha-neurotoxins showed that most of them possess a high positive charge and sequence homology in the lipid-binding motif of NTII, implying that interaction with the membrane surrounding nAChR may be common for the toxin family.

  23. Lyukmanova E.N., Shulepko M.A., Tikhonov R.V., Shenkarev Z.O., Paramonov A.S., Wulfson A.N., Kasheverov I.E., Ustich T.L., Utkin Y.N., Arseniev A.S., Tsetlin V.I., Dolgikh D.A., Kirpichnikov M.P. (2009). Bacterial production and refolding from inclusion bodies of a "weak" toxin, a disulfide rich protein. Biochemistry Mosc. 74 (10), 1142–9 [+]

    The gene for the "weak" toxin of Naja kaouthia venom was expressed in Escherichia coli. "Weak" toxin is a specific inhibitor of nicotine acetylcholine receptor, but mechanisms of interaction of similar neurotoxins with receptors are still unknown. Systems previously elaborated for neurotoxin II from venom of the cobra Naja oxiana were tested for bacterial production of "weak" toxin from N. kaouthia venom. Constructs were designed for cytoplasmic production of N. kaouthia "weak" toxin in the form of a fused polypeptide chain with thioredoxin and for secretion with the leader peptide STII. However, it became possible to obtain "weak" toxin in milligram amounts only within cytoplasmic inclusion bodies. Different approaches for refolding of the toxin were tested, and conditions for optimization of the yield of the target protein during refolding were investigated. The resulting protein was characterized by mass spectrometry and CD and NMR spectroscopy. Experiments on competitive inhibition of (125)I-labeled alpha-bungarotoxin binding to the Torpedo californica electric organ membranes containing the muscle-type nicotine acetylcholine receptor (alpha1(2)beta1gammadelta) showed the presence of biological activity of the recombinant "weak" toxin close to the activity of the natural toxin (IC(50) = 4.3 +/- 0.3 and 3.0 +/- 0.5 microM, respectively). The interaction of the recombinant toxin with alpha7 type human neuronal acetylcholine receptor transfected in the GH(4)C(1) cell line also showed the presence of activity close to that of the natural toxin (IC(50) 31 +/- 5.0 and 14.8 +/- 1.3 microM, respectively). The developed bacterial system for production of N. kaouthia venom "weak" toxin was used to obtain (15)N-labeled analog of the neurotoxin.

  24. Lyukmanova E.N., Shulepko M.A., Shenkarev Z.O., Dolgikh D.A., Kirpichnikov M.P. (2009). [The in vitro production of three-finger neurotoxins from snake venoms with a high abundance of disulfide bonds. Problems and their solutions]. Bioorg. Khim. 36 (2), 149–58 [+]

    alpha-Neurotoxins from snake venom are highly efficient inhibitors of nicotinic acetylcholine receptors (nAChR). These small proteins that have a beta-structural organization attract much interest as a tool for studies of nACh R and as prototypes for the development of new Pharmaceuticals for the treatment of diseases of the nervous system. However, the in vitro production of "three-finger" neurotoxins is complicated by the presence of four or five disulfide bonds that are closely located in their molecules. The present review contains a description of the most frequently used modern approaches for the E. coli expression of recombinant proteins (direct expression, expression as fusions, and secretion) with an emphasis placed on the recombinant production of snake alpha-neurotoxins. The methods of E. coli expression of isotopically labeled neurotoxins are described. The proposed solutions will be of broad interest for the bacterial production of other disulfide-abundant proteins.

  25. Люкманова Е.Н., Копеина Г.С., Шулепко М.А., Шенкарёв З.О., Арсеньев А.С., Долгих Д.А., Кирпичников М.П. (2009). Бесклеточная продукция внеклеточного домена никотинового ацетилхолинового рецептора. Acta Naturae 1, 92–94 ID:450
  26. Lyukmanova E.N., Shenkarev Z.O., Schulga A.A., Ermolyuk Y.S., Mordvintsev D.Y., Utkin Y.N., Shoulepko M.A., Hogg R.C., Bertrand D., Dolgikh D.A., Tsetlin V.I., Kirpichnikov M.P. (2007). Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain alpha-neurotoxins acting on neuronal nicotinic receptors. J. Biol. Chem. 282 (34), 24784–91 [+]

    Different snake venom neurotoxins block distinct subtypes of nicotinic acetylcholine receptors (nAChR). Short-chain alpha-neurotoxins preferentially inhibit muscle-type nAChRs, whereas long-chain alpha-neurotoxins block both muscle-type and alpha7 homooligomeric neuronal nAChRs. An additional disulfide in the central loop of alpha- and kappa-neurotoxins is essential for their action on the alpha7 and alpha3beta2 nAChRs, respectively. Design of novel toxins may help to better understand their subtype specificity. To address this problem, two chimeric toxins were produced by bacterial expression, a short-chain neurotoxin II Naja oxiana with the grafted disulfide-containing loop from long-chain neurotoxin I from N. oxiana, while a second chimera contained an additional A29K mutation, the most pronounced difference in the central loop tip between long-chain alpha-neurotoxins and kappa-neurotoxins. The correct folding and structural stability for both chimeras were shown by (1)H and (1)H-(15)N NMR spectroscopy. Electrophysiology experiments on the nAChRs expressed in Xenopus oocytes revealed that the first chimera and neurotoxin I blockalpha7 nAChRs with similar potency (IC(50) 6.1 and 34 nM, respectively). Therefore, the disulfide-confined loop endows neurotoxin II with full activity of long-chain alpha-neurotoxin and the C-terminal tail in neurotoxin I is not essential for binding. The A29K mutation of the chimera considerably diminished the affinity for alpha7 nAChR (IC(50) 126 nM) but did not convey activity at alpha3beta2 nAChRs. Docking of both chimeras toalpha7 andalpha3beta2 nAChRs was possible, but complexes with the latter were not stable at molecular dynamics simulations. Apparently, some other residues and dimeric organization of kappa-neurotoxins underlie their selectivity for alpha3beta2 nAChRs.