Фесенко Игорь Александрович

Избранные публикации

  1. Fesenko I., Khazigaleeva R., Kirov I., Kniazev A., Glushenko O., Babalyan K., Arapidi G., Shashkova T., Butenko I., Zgoda V., Anufrieva K., Seredina A., Filippova A., Govorun V. (2017). Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens. Sci Rep 7 (1), 2698 [+]

    Alternative splicing (AS) can significantly impact the transcriptome and proteome of a eukaryotic cell. Here, using transcriptome and proteome profiling data, we analyzed AS in two life forms of the model moss Physcomitrella patens, namely protonemata and gametophores, as well as in protoplasts. We identified 12 043 genes subject to alternative splicing and analyzed the extent to which AS contributes to proteome diversity. We could distinguish a few examples that unambiguously indicated the presence of two or more splice isoforms from the same locus at the proteomic level. Our results indicate that alternative isoforms have a small effect on proteome diversity. We also revealed that mRNAs and pre-mRNAs have thousands of complementary binding sites for long non-coding RNAs (lncRNAs) that may lead to potential interactions in transcriptome. This finding points to an additional level of gene expression and AS regulation by non-coding transcripts in Physcomitrella patens. Among the differentially expressed and spliced genes we found serine/arginine-rich (SR) genes, which are known to regulate AS in cells. We found that treatment with abscisic (ABA) and methyl jasmonic acids (MeJA) led to an isoform-specific response and suggested that ABA in gametophores and MeJA in protoplasts regulate AS and the transcription of SR genes.

  2. Fesenko I., Seredina A., Arapidi G., Ptushenko V., Urban A., Butenko I., Kovalchuk S., Babalyan K., Knyazev A., Khazigaleeva R., Pushkova E., Anikanov N., Ivanov V., Govorun V.M. (2016). The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation. Front Plant Sci 7, 1661 [+]

    Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.