Пантелеев Павел Валерьевич

Избранные публикации

  1. Bolosov I.A., Kalashnikov A.A., Panteleev P.V., Ovchinnikova T.V. (2017). Analysis of Synergistic Effects of Antimicrobial Peptide Arenicin-1 and Conventional Antibiotics. Bull. Exp. Biol. Med. 162 (6), 765–768 [+]

    We studied combined effects of antimicrobial peptide arenicin-1 from lugworm Arenicola marina and some conventional antibiotics. A number of drug combinations with pronounced synergistic effects were revealed. The influence of antibacterial activity assessment conditions was determined and the methodology excluding false-positive test results was developed.

  2. Panteleev P.V., Myshkin M.Y., Shenkarev Z.O., Ovchinnikova T.V. (2017). Dimerization of the antimicrobial peptide arenicin plays a key role in the cytotoxicity but not in the antibacterial activity. Biochem. Biophys. Res. Commun. 482 (4), 1320–1326 [+]

    The β-hairpin antimicrobial peptides arenicins from marine polychaeta Arenicola marina exhibit a broad spectrum of antimicrobial activity and high cytotoxicity. In this study the biological activities of arenicin-1 and its therapeutically valuable analog Ar-1[V8R] were investigated. The peptide Ar-1[V8R] displays significantly reduced cytotoxicity against mammalian cells relative to the wild-type arenicin-1. At the same time, both peptides exhibit similar antibacterial activities and kinetics of bacterial membrane permeabilization. Comparative NMR analysis of the peptides spatial structures in water and membrane-mimicking environment showed that Ar-1[V8R] in contrast to arenicin has significantly lower dimerization propensity. Thus, dimerization of the antimicrobial peptide arenicin plays a key role in the cytotoxicity but not in the antibacterial activity.

  3. Panteleev P.V., Balandin S.V., Ivanov V.T., Ovchinnikova T.V. (2017). A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides. Curr. Med. Chem. 24 (17), 1724–1746 [+]

    Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play the key role in host defense. Because of the low resistance rate, AMPs have caught extensive attention as possible alternatives to conventional antibiotics. Over the last years, it has become evident that biological functions of AMPs are beyond direct killing of microbial cells. This review focuses on a relatively small family of animal host defense peptides with the β-hairpin structure stabilized by disulfide bridges. Their small size, rigid structure, stability to proteases, and plethora of biological functions, including antibacterial, antifungal, antiviral, anticancer, endotoxin-binding, metabolism- and immune- modulating activities, make natural β-hairpin AMPs an attractive molecular basis for drug design.

  4. Panteleev P.V., Bolosov I.A., Ovchinnikova T.V. (2016). Bioengineering and functional characterization of arenicin shortened analogs with enhanced antibacterial activity and cell selectivity. J. Pept. Sci. 22 (2), 82–91 [+]

    New bioengineering approaches are required for development of more active and less toxic antimicrobial peptides. In this study we used β-hairpin antimicrobial peptide arenicin-1 as a template for design of more potent antimicrobials. In particular, six shortened 17-residue analogs were obtained by recombinant expression in Escherichia coli. Besides, we have introduced the second disulfide bridge by analogy with the structure of tachyplesins. As a result, a number of analogs with enhanced activity and cell selectivity were developed. In comparison with arenicin-1, which acts on cell membranes with low selectivity, the most potent and promising its analog termed ALP1 possessed two-fold higher antibacterial activity and did not affect viability of mammalian cells at concentration up to 50 μM. The therapeutic index of ALP1 against both Gram-positive and Gram-negative bacteria was significantly increased compared with that of arenicin-1 while the mechanism of action remained the same. Like arenicin-1, the analog rapidly disrupt membranes of both stationary and exponential phase bacterial cells and effectively kills multidrug-resistant Gram-negative bacteria. Furthermore, ALP1 was shown to bind DNA in vitro at a ratio of 1:1 (w/w). The circular dichroism spectra demonstrated that secondary structures of the shortened analogs were similar to that of arenicin-1 in water solution, but significantly differed in membrane-mimicking environments. This work shows that a strand length is one of the key parameters affecting cell selectivity of β-hairpin antimicrobial peptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  5. Panteleev P.V., Ovchinnikova T.V. (2015). Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol. Appl. Biochem. , [+]

    Here we report an efficient procedure for recombinant production and purification of tachyplesin I with a final yield of 17 mg per liter of the culture medium. The peptide was expressed in Escherichia coli as a part of the thioredoxin fusion protein. With the use of soluble expression followed by immobilized metal-ion affinity chromatography, the recombinant protein cleavage and reversed-phase high performance liquid chromatography, a yield of tachyplesin I did not exceed 6.5 mg per liter of the culture medium. Further optimization studies were carried out to improve the protein expression level and simplify purification procedure of the target peptide. To achieve better yield of the peptide, we used high-cell-density bacterial expression. The formed inclusion bodies were highly enriched with the fusion protein, which allowed us to perform direct chemical cleavage of the inclusion bodies solubilized in 6 M guanidine-HCl with subsequent selective precipitation of proteins with trifluoroacetic acid. This enabled us to avoid an extra step of purification by immobilized metal-ion affinity chromatography. The developed procedure has made it possible to obtain biologically active tachyplesin I and was used for screening a number of its mutant analogs. As the result, several selective and non-hemolytic analogs were developed. Significant reduction in hemolytic activity without lose of antimicrobial activity was achieved by substitution of tyrosine or isoleucine residue in the β-turn region of the molecule with hydrophilic serine. The present study affords further insight into molecular mechanism of antimicrobial action of tachyplesin and gains a better understanding of structure-activity relationships in its analogs. This is aimed at searching for novel antibiotics on the basis of antimicrobial peptides with reduced cytotoxicity. This article is protected by copyright. All rights reserved.

  6. Sychev S.V., Balandin S.V., Panteleev P.V., Barsukov L.I., Ovchinnikova T.V. (2015). Lipid-dependent pore formation by antimicrobial peptides arenicin-2 and melittin demonstrated by their proton transfer activity. J. Pept. Sci. 21 (2), 71–6 [+]

    This work presents a comparative study of proton transfer activity (PTA) of two cationic (+6) antimicrobial peptides, β-structural arenicin-2 and α-helical melittin. A new approach was proposed for the detection of passive proton transfer by using proteoliposomes containing bacteriorhodopsin, which creates a small light-induced electrochemical proton gradient ∆ΔpH. Addition of several nanomoles of the peptides lowers ∆ΔpH that is proximately indicative of the pore formation. The quantitative analysis of sigmoidal dependences of ∆pH on the peptides concentration was carried out using liposomes prepared from PC, PC/PE, PC/PE/PI and PC/PG. Substitution of PC-containing liposomes with PE-containing ones, having negative spontaneous curvature, reduced the PTA of α-helical melittin and increased that of β-structural arenicin-2. This result indicates an essential difference in the pore formation by these peptides. Further increase of PTA in response to arenicin-2 (in contrast to melittin) was observed in the liposomes prepared from PC/PE/PI. The data analysis leads to the conclusion that PTA is influenced by (i) efficiency of the pore assemblage, which depends on the structure of pore-forming peptides, and the spontaneous curvature of lipids and (ii) the presence of mobile protons in the polar head groups of phospholipids.

  7. Panteleev P.V., Bolosov I.A., Balandin S.V., Ovchinnikova T.V. (2015). Design of antimicrobial peptide arenicin analogs with improved therapeutic indices. J. Pept. Sci. 21 (2), 105–13 [+]

    β-Hairpin antimicrobial peptides are among the most potent peptide antibiotics of animal origin. Arenicins, isolated earlier from marine polychaeta lugworm Arenicola marina, belong to a family of β-hairpin antimicrobial peptides and display a broad spectrum of biological activities. However, despite being potent antimicrobials, arenicins are partially unapplicable as therapeutics as a result of their relatively high cytotoxicity against mammalian cells. In this study, a template-based approach was used to create therapeutically valuable analogs of arenicin-1 and identify amino acid residues important for antibacterial and cytotoxic activities of the peptide. The plasmids encoding recombinant analogs were constructed by mutagenesis technique based on inverse PCR amplification of the whole arenicin-1 expression plasmid. The analogs were produced as a part of the fusion proteins in Escherichia coli. It was shown that an obvious reduction in hemolytic activity without lose of antimicrobial activity can be achieved by a single amino acid substitution in the non-polar face of the molecule with hydrophilic residues such as serine and arginine. As the result, the selective analog with 50-fold improved therapeutic index was developed. The circular dichroism spectra demonstrated that the secondary structure of the analog was similar to the natural arenicin-1 in water solution and sodium dodecyl sulfate micelles but significantly differed in the presence of dodecylphosphocholine micelles mimicking mammalian membranes. Similarly to arenicin-1, the designed analog killed bacteria via induction of the membrane damage, assessed using the fluorescent dye SYTOX Green uptake. Our results afford molecular insight into mechanism of antimicrobial action of the designed arenicin analogs and their possible clinical application.

  8. Panteleev P.V., Bolosov I.A., Balandin S.V., Ovchinnikova T.V. (2015). Structure and Biological Functions of β-Hairpin Antimicrobial Peptides. Acta Naturae 7 (1), 37–47 [+]

    Antimicrobial peptides (AMPs) are evolutionarily ancient factors of the innate immune system that serve as a crucial first line of defense for humans, animals, and plants against infection. This review focuses on the structural organization, biosynthesis, and biological functions of AMPs that possess a β-hairpin spatial structure. Representatives of this class of AMPs are among the most active antibiotic molecules of animal origin. Due to their wide spectrum of activity and resistance to internal environmental factors, natural β-hairpin AMPbased compounds might become the most promising drug candidates.

  9. Shamova O.V., Orlov D.S., Balandin S.V., Shramova E.I., Tsvetkova E.V., Panteleev P.V., Leonova Y.F., Tagaev A.A., Kokryakov V.N., Ovchinnikova T.V. (2014). Acipensins - Novel Antimicrobial Peptides from Leukocytes of the Russian Sturgeon Acipenser gueldenstaedtii. Acta Naturae 6 (4), 99–109 [+]

    Antimicrobial peptides (AMPs) play an important role in the innate defense mechanisms in humans and animals. We have isolated and studied a set of antimicrobial peptides from leukocytes of the Russian sturgeon Acipenser gueldenstaedtii belonging to a subclass of chondrosteans, an ancient group of bony fish. Structural analysis of the isolated peptides, designated as acipensins (Ac), revealed in leukocytes of the Russian sturgeon six novel peptides with molecular masses of 5336.2 Da, 3803.0 Da, 5173.0 Da, 4777.5 Da, 5449.4 Da, and 2740.2 Da, designated as Ac1-Ac6, respectively. Complete primary structures of all the isolated peptides were determined, and the biological activities of three major components - Ac1, Ac2, and Ac6 - were examined. The peptides Ac1, Ac2, Ac3, Ac4, and Ac5 were found to be the N-terminal acetylated fragments 1-0, 1-5, 1-9, 1-4, and 1-1 of the histone H2A, respectively, while Ac6 was shown to be the 62-5 fragment of the histone H2A. The peptides Ac1 and Ac2 displayed potent antimicrobial activity towards Gram-negative and Gram-positive bacteria (Escherichia coli ML35p, Listeria monocytogenes EGD, MRSA ATCC 33591) and the fungus Candida albicans 820, while Ac6 proved effective only against Gram-negative bacteria. The efficacy of Ac 1 and Ac2 towards the fungus and MRSA was reduced upon an increase in the ionic strength of the solution. Ac1, Ac2, and Ac6, at concentrations close to their minimum inhibitory concentrations, enhanced the permeability of the E.coli ML35p outer membrane to the chromogenic marker, but they did not affect appreciably the permeability of the bacterial inner membrane in comparison with a potent pore-forming peptide, protegrin 1. Ac1, Ac2, and Ac6 revealed no hemolytic activity against human erythrocytes at concentrations of 1 to 40 μM and had no cytotoxic effect (1 to 20 μM) on K-562 and U-937 cells in vitro. Our findings suggest that histone-derived peptides serve as important anti-infective host defense molecules.

  10. Shenkarev Z.O., Lyukmanova E.N., Paramonov A.S., Panteleev P.V., Balandin S.V., Shulepko M.A., Mineev K.S., Ovchinnikova T.V., Kirpichnikov M.P., Arseniev A.S. (2014). Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides. Acta Naturae 6 (2), 84–94 [+]

    Lipid-protein nanodiscs (LPNs) are nanoscaled fragments of a lipid bilayer stabilized in solution by the apolipoprotein or a special membrane scaffold protein (MSP). In this work, the applicability of LPN-based membrane mimetics in the investigation of water-soluble membrane-active peptides was studied. It was shown that a pore-forming antimicrobial peptide arenicin-2 from marine lugworm (charge of +6) disintegrates LPNs containing both zwitterionic phosphatidylcholine (PC) and anionic phosphatidylglycerol (PG) lipids. In contrast, the spider toxin VSTx1 (charge of +3), a modifier of Kv channel gating, effectively binds to the LPNs containing anionic lipids (POPC/DOPG, 3 : 1) and does not cause their disruption. VSTx1 has a lower affinity to LPNs containing zwitterionic lipids (POPC), and it weakly interacts with the protein component of nanodiscs, MSP (charge of -6). The neurotoxin II (NTII, charge of +4) from cobra venom, an inhibitor of the nicotinic acetylcholine receptor, shows a comparatively low affinity to LPNs containing anionic lipids (POPC/DOPG, 3 : 1 or POPC/DOPS, 4 : 1), and it does not bind to LPNs/POPC. The obtained data show that NTII interacts with the LPN/POPC/DOPS surface in several orientations, and that the exchange process among complexes with different topologies proceeds fast on the NMR timescale. Only one of the possible NTII orientations allows for the previously proposed specific interaction between the toxin and the polar head group of phosphatidylserine from the receptor environment (Lesovoy et al., Biophys. J. 2009. V. 97. № 7. P. 2089-2097). These results indicate that LPNs can be used in structural and functional studies of water-soluble membrane-active peptides (probably except pore-forming ones) and in studies of the molecular mechanisms of peptide-membrane interaction.

  11. Shenkarev Z.O., Panteleev P.V., Balandin S.V., Gizatullina A.K., Altukhov D.A., Finkina E.I., Kokryakov V.N., Arseniev A.S., Ovchinnikova T.V. (2012). Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochem. Biophys. Res. Commun. 429 (1-2), 63–9 [+]

    Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its (15)N-labeled analogue were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 3(10)-helix and two α-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two α-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the "functional dyad" required for the high-affinity interaction with the K(+)-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.