Финкина Екатерина Ивановна

Избранные публикации

  1. Ovchinnikova T.V., Finkina E.I., Melnikova D.N., Bogdanov I.V. (2016). Plant pathogenesis-related proteins PR-10 and PR-14 as components of innate immunity system and ubiquitous allergens. Curr. Med. Chem. , [+]

    Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologues comprise two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologues (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and cross-reactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application.

  2. Finkina E.I., Melnikova D.N., Bogdanov I.V., Ovchinnikova T.V. (2016). Lipid Transfer Proteins As Components of the Plant Innate Immune System: Structure, Functions, and Applications. Acta Naturae 8 (2), 47–61 [+]

    Among a variety of molecular factors of the plant innate immune system, small proteins that transfer lipids and exhibit a broad spectrum of biological activities are of particular interest. These are lipid transfer proteins (LTPs). LTPs are interesting to researchers for three main features. The first feature is the ability of plant LTPs to bind and transfer lipids, whereby these proteins got their name and were combined into one class. The second feature is that LTPs are defense proteins that are components of plant innate immunity. The third feature is that LTPs constitute one of the most clinically important classes of plant allergens. In this review, we summarize the available data on the plant LTP structure, biological properties, diversity of functions, mechanisms of action, and practical applications, emphasizing their role in plant physiology and their significance in human life.

  3. Melnikova D.N., Mineev K.S., Finkina E.I., Arseniev A.S., Ovchinnikova T.V. (2016). A novel lipid transfer protein from the dill Anethum graveolens L.: isolation, structure, heterologous expression, and functional characteristics. J. Pept. Sci. 22 (1), 59–66 [+]

    A novel lipid transfer protein, designated as Ag-LTP, was isolated from aerial parts of the dill Anethum graveolens L. Structural, antimicrobial, and lipid binding properties of the protein were studied. Complete amino acid sequence of Ag-LTP was determined. The protein has molecular mass of 9524.4 Da, consists of 93 amino acid residues including eight cysteines forming four disulfide bonds. The recombinant Ag-LTP was overexpressed in Escherichia coli and purified. NMR investigation shows that the Ag-LTP spatial structure contains four α-helices, forming the internal hydrophobic cavity, and a long C-terminal tail. The measured volume of the Ag-LTP hydrophobic cavity is equal to ~800 A(3) , which is much larger than those of other plant LTP1s. Ag-LTP has weak antifungal activity and unpronounced lipid binding specificity but effectively binds plant hormone jasmonic acid. Our results afford further molecular insight into biological functions of LTP in plants. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  4. Bogdanov I.V., Finkina E.I., Balandin S.V., Melnikova D.N., Stukacheva E.A., Ovchinnikova T.V. (2015). Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein. Acta Naturae 7 (3), 65–73 [+]

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major peach allergen Pru p 3. Both isoforms were shown to have immunological properties similar to those of other plant allergenic LTPs, but Lc-LTP3 displayed a less pronounced immunoreactivity.

  5. Shenkarev Z.O., Gizatullina A.K., Finkina E.I., Alekseeva E.A., Balandin S.V., Mineev K.S., Arseniev A.S., Ovchinnikova T.V. (2014). Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochem. Biophys. Res. Commun. 451 (2), 252–7 [+]

    A new defensin Lc-def, isolated from germinated seeds of the lentil Lens culinaris, has molecular mass 5440.4Da and consists of 47 amino acid residues. Lc-def and its (15)N-labeled analog were overexpressed in Escherichia coli. Antimicrobial activity of the recombinant protein was examined, and its spatial structure, dynamics, and interaction with lipid vesicles were studied by NMR spectroscopy. It was shown that Lc-def is active against fungi, but does not inhibit the growth of Gram-positive and Gram-negative bacteria. The peptide is monomeric in aqueous solution and contains one α-helix and triple-stranded β-sheet, which form cysteine-stabilized αβ motif (CSαβ) previously found in other plant defensins. The sterically neighboring loop1 and loop3 protrude from the defensin core and demonstrate significant mobility on the μs-ms timescale. Lc-def does not bind to the zwitterionic lipid (POPC) vesicles but interacts with the partially anionic (POPC/DOPG, 7:3) membranes under low-salt conditions. The Lc-def antifungal activity might be mediated through electrostatic interaction with anionic lipid components of fungal membranes.

  6. Gizatullina A.K., Finkina E.I., Mineev K.S., Melnikova D.N., Bogdanov I.V., Telezhinskaya I.N., Balandin S.V., Shenkarev Z.O., Arseniev A.S., Ovchinnikova T.V. (2013). Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris. Biochem. Biophys. Res. Commun. 439 (4), 427–32 [+]

    Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600Å(3)). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  7. Shenkarev Z.O., Panteleev P.V., Balandin S.V., Gizatullina A.K., Altukhov D.A., Finkina E.I., Kokryakov V.N., Arseniev A.S., Ovchinnikova T.V. (2012). Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochem. Biophys. Res. Commun. 429 (1-2), 63–9 [+]

    Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its (15)N-labeled analogue were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 3(10)-helix and two α-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two α-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the "functional dyad" required for the high-affinity interaction with the K(+)-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.

  8. Akkerdaas J., Finkina E.I., Balandin S.V., SantosMagadán S., Knulst A., FernandezRivas M., Asero R., vanRee R., Ovchinnikova T.V. (2011). Lentil (Lens culinaris) Lipid Transfer Protein Len c 3: A Novel Legume Allergen. International archives of allergy and immunology 157 (1), 51–57 [+]

    Background: Lentils are increasingly consumed in many parts of the world.Two allergens, Len c 1 and 2, have been reported previously. Recently, peanut and green bean lipid transfer proteins (LTPs) have been identified as the first two members of an important group of allergens that might be associated with severe food allergies. Objective: To investigate lentil LTP as a potential new allergen. Methods: Efficacy of LTP extraction was monitored at different acidic pH values, using immunoblotting with cross-reactive anti-peach LTP antiserum. Natural LTP was purified from lentil extract and expressed as recombinant allergen in Escherichia coli. Sera from 10 lentil-allergic and/or -sensitized patients (Spain: 6, Italy: 1 and the Netherlands: 3) were used to further characterize lentil LTP. Results: Natural lentil LTP, purified from the homogenized germinated seeds and optimally extracted at pH 3, was identified and designated as allergen Len c 3. By CAP, 9/10 sera showed specific IgE to Len c 3. Recombinant (r) Len c 3 was successfully purified. The natural (n) Len c 3 CAP was completely inhibited by rLen c 3/rPru p 3. IgE binding to lentil pH 3 extract blot was completely inhibited by rLen c 3. Conclusion: The availability of immunochemically active nLen/rLen c 3 as a novel legume allergen facilitates further development and implementation of a third (next to peanut and green bean) legume LTP in component-resolved diagnosis strategies and contributes to evaluate the clinical importance of legume LTPs. Preferential extraction of Len c 3 (pH 3) will affect the production of sensitive extract-based diagnostic tests.

  9. Shenkarev Z.O., Finkina E.I., Nurmukhamedova E.K., Balandin S.V., Mineev K.S., Nadezhdin K.D., Yakimenko Z.A., Tagaev A.A., Temirov Y.V., Arseniev A.S., Ovchinnikova T.V. (2010). Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry 49 (30), 6462–72 [+]

    A novel synergetic lantibiotic pair, Lchalpha(3249.51 Da) and Lchbeta(3019.36 Da), termed lichenicidin VK21, was isolated from the producer strain Bacillus licheniformis VK21. Chemical and spatial structures of Lchalphaand Lchbeta were determined. Each peptide contains 31 amino acid residues linked by 4 intramolecular thioether bridges and the N-terminal 2-oxobutyryl group. Spatial structures of Lchalpha and Lchbetawere studied by NMR spectroscopy in methanol solution. Lchalpha peptide displays structural homology with mersacidin-like lantibiotics and involves relatively well-structured N- and C-terminal domains connected by a flexible loop stabilized by thioether bridge Ala11-S-Ala21. In contrast, the Lchbetapeptide represents prolonged hydrophobic alpha-helix flanked with more flexible N- and C-terminal domains. A lantibiotic cluster of the Bacillus licheniformis VK21 genome which comprises the structural genes, lchA1 and lchA2, encoding the lantibiotics precursors, as well as the gene of a modifying enzyme lchM1, was amplified and sequenced. The mature peptides, Lchalphaand Lchbetainteract synergistically to possess antibiotic activity against Gram-positive bacteria within a nanomolar concentration range, though the individual peptides were shown to be active at micromolar concentrations. Our results afford molecular insight into mechanism of lichenicidin VK21 action.

  10. Odintsova T.I., Vassilevski A.A., Slavokhotova A.A., Musolyamov A.K., Finkina E.I., Khadeeva N.V., Rogozhin E.A., Korostyleva T.V., Pukhalsky V.A., Grishin E.V., Egorov T.A. (2009). A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J. 276 (15), 4266–75 [+]

    Two forms of a novel antimicrobial peptide (AMP), named WAMP-1a and WAMP-1b, that differ by a single C-terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP-1a and WAMP-1b share similarity with hevein-type peptides, they possess 10 cysteine residues arranged in a unique cysteine motif which is distinct from those described previously for plant AMPs, but is characteristic of the chitin-binding domains of cereal class I chitinases. An unusual substitution of a serine for a glycine residue in the chitin-binding domain was detected for the first time in hevein-like polypeptides. Recombinant WAMP-1a was successfully produced in Escherichia coli. This is the first case of high-yield production of a cysteine-rich plant AMP from a synthetic gene. Assays of recombinant WAMP-1a activity showed that the peptide possessed high broad-spectrum inhibitory activity against diverse chitin-containing and chitin-free pathogens, with IC(50) values in the micromolar range. The discovery of a new type of AMP active against structurally dissimilar microorganisms implies divergent modes of action and discloses the complexity of plant-microbe interactions.

  11. Finkina E.I., Shramova E.I., Tagaev A.A., Ovchinnikova T.V. (2008). A novel defensin from the lentil Lens culinaris seeds. Biochem. Biophys. Res. Commun. 371 (4), 860–5 [+]

    A novel 47-residue plant defensin was purified from germinated seeds of the lentil Lens culinaris by ammonium sulfate precipitation, gel filtration, chromatography, and RP-HPLC. The molecular mass (5440.41Da) and complete amino acid sequence (KTCENLSDSFKGPCIPDGNCNKHCKEKEHLLSGRCRDDFRCWCTRNC) of defensin, termed Lc-def, were determined. Lc-def has eight cysteines forming four disulfide bonds. The total RNA was isolated from lentil germinated seeds, RT-PCR and subsequent cloning were performed, and cDNA was sequenced. A 74-residue predefensin contains a putative signal peptide (27 amino acid) and a mature protein. Lc-def shows high sequence homology with legumes defensins, exhibits an activity against Aspergillus niger, but does not inhibit proteolytic enzymes.

  12. Ovchinnikova T.V., Shenkarev Z.O., Nadezhdin K.D., Balandin S.V., Zhmak M.N., Kudelina I.A., Finkina E.I., Kokryakov V.N., Arseniev A.S. (2007). Recombinant expression, synthesis, purification, and solution structure of arenicin. Biochem. Biophys. Res. Commun. 360 (1), 156–62 [+]

    Arenicins are 21-residue cationic antimicrobial peptides, isolated from marine polychaeta Arenicola marina. In order to determine a high-resolution three-dimensional structure of arenicin-2, the recombinant peptide was overexpressed as a fused form in Escherichia coli. Both arenicin isoforms were synthesized using the Fmoc-based solid-phase strategy. Recombinant and synthetic arenicins were purified, and their antimicrobial and spectroscopic properties were analyzed. NMR investigation shows that in water solution arenicin-2 displays a prolonged beta-hairpin, formed by two antiparallel beta-strands and stabilized by one disulfide and nine hydrogen bonds. A significant right-handed twist in the beta-sheet is deprived the peptide surface of amphipathicity. CD spectroscopic analysis indicates that arenicin-2 binds to the SDS and DPC micelles, and conformation of the peptide is significantly changed upon binding. Arenicin strongly binds to anionic lipid (POPE/POPG) vesicles in contrast with zwitterionic (POPC) ones. These results suggest that arenicins are membrane active peptides and point to possible mechanism of their selectivity toward bacterial cells.

  13. Finkina E.I., Balandin S.V., Serebryakova M.V., Potapenko N.A., Tagaev A.A., Ovchinnikova T.V. (2007). Purification and primary structure of novel lipid transfer proteins from germinated lentil (Lens culinaris) seeds. Biochemistry Mosc. 72 (4), 430–8 [+]

    A subfamily of eight novel lipid transfer proteins designated as Lc-LTP1-8 was found in the lentil Lens culinaris. Lc-LTP2, Lc-LTP4, Lc-LTP7, and Lc-LTP8 were purified from germinated lentil seeds, and their molecular masses (9268.7, 9282.7, 9121.5, 9135.5 daltons) and complete amino acid sequences were determined. The purified proteins consist of 92-93 amino acid residues, have four disulfide bonds, and inhibit growth of Agrobacterium tumefaciens. Total RNA was isolated from germinated lentil seeds, RT-PCR and cloning were performed, and the cDNAs of six LTPs were sequenced. Precursor 116-118-residue proteins with 24-25-residue signal peptides were found, and two of them are purified proteins Lc-LTP2 and Lc-LTP4.