Ilia V. Yampolsky

Personal information

Born: April 25, 1979 (Moscow). Graduated from bioclass of Moscow high-school 1543. From 1996 to 2001 studied at the Higher Chemical College of the Russian Academy of Sciences. While being a student worked at N. D. Zelinsky Institute of Organic Chemistry and A. N. Nesmeyanov Institute of Organoelement Compounds. Since 2002 works at M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences. In 2009 received PhD degree in biochemistry for studying chemical structures of the chromophores of GFP-like fluorescent proteins.

In 2016 received DrSc degree for studying novel luciferins.

Scientific interests

Research interests: medicinal chemistry, total synthesis of natural products, bioluminescence, fluorescent and fluorogenic dyes, evaluation of biosynthetic mechanisms. He dedicates plenty of time to teaching chemistry to high-school and university students specialized in biology and authors about a dozen original lecture courses.

Main scientific results





Biosynthetic mechanism of chemically unstable acylimine chromophore of red fluorescent proteins was investigated. This required development of new synthetic strategy to 2-acylaminoimidazolones - biosynthetic precursors of 2-acyliminoimidazolones. We have shown spontaneous oxidation of precursors with air oxygen by unusual mechanism.






Total synthesis of chromophores of GFP-like fluorescent proteins was used as a tool for independent structure determination of these chromophores. Also, this allowed to study structure-spectral properties relationship within this range of imidazole derivatives and to develop novel synthetic approaches to 2-functionalized arylideneimidazolones. Chromophores of AsFP595, Kaede and YFP538 were synthesized.















A blue proteinaceous pigment from Rhizostoma pulmo (jellyfish from the Black Sea) was isolated, sequenced and studied by biochemical methods. An attempt to determine the nature of the blue coloration (chromophore) was unsuccessful.




Black Sea jellyfish Rhizostoma pulmo possessing an unidentified blue pigment



Selected publications

  1. Chen C., Liu W., Baranov M.S., Baleeva N.S., Yampolsky I.V., Zhu L., Wang Y., Shamir A., Solntsev K.M., Fang C. (2017). Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. J Phys Chem Lett , [+]

    Super-photoacidity involves ultrafast proton motions implicated in numerous chemical and biological processes. We used conformational locking and strategic addition of electron-withdrawing substituents to synthesize a new GFP-chromophore analog: p-HO-3,5-diF-BDI:BF2 (diF). It is highly fluorescent and exhibits excited-state proton transfer (ESPT) in various solvents, placing it among the strongest photoacids. Tunable femtosecond stimulated Raman spectroscopy with unique resonance conditions and transient absorption are complementarily employed to elucidate structural basis for super-photoacidity. We reveal a multistep ESPT reaction from diF to methanol with an initial proton dissociation on the ~600 fs timescale that forms a charge-separated state, stabilized by solvation, and followed by a diffusion-controlled proton transfer on the ~350 ps timescale. A ~1580 cm(-1) phenolic-ring motion is uncovered to accompany ESPT before 1 ps. This study provides a vivid movie of the photoinduced proton dissociation of a superphotoacid with bright fluorescence, effectively bridging fundamental mechanistic insights to precise control of macroscopic functions.

  2. Yuan M., Ma X., Jiang T., Gao Y., Cui Y., Zhang C., Yang X., Huang Y., Du L., Yampolsky I., Li M. (2017). Prolonged bioluminescence imaging in living cells and mice using novel pro-substrates for Renilla luciferase. Org. Biomol. Chem. , [+]

    The prodrug or caged-luciferin strategy affords an excellent platform for persistent bioluminescence imaging. In the current work, we designed and synthesized ten novel pro-substrates for Renilla luciferase by introducing ester protecting groups with different sizes into the carbonyl group of the free luciferin 1. Taking advantage of intracellular esterases, lipases, and nucleophilic substances, the ester protecting groups were hydrolyzed, resulting in the release of a free luciferin and a bioluminescence signal turn-on. Among tested pro-substrates, the butyryloxymethyl luciferin 7 exhibited low cytotoxicity and prolonged luminescence signal both in cellulo and in vivo. Therefore, the butyryloxymethyl luciferin 7 can act as a promising substrate for noninvasive extended imaging in diagnostic and therapeutic fields.

  3. Bozhanova N.G., Baranov M.S., Klementieva N.V., Sarkisyan K.S., Gavrikov A.S., Yampolsky I.V., Zagaynova E.V., Lukyanov S.A., Lukyanov K.A., Mishin A.S. (2017). Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chemical Science 8 (10), 7138–7142 [+]

    We present protein-PAINT – the implementation of the general principles of PAINT (Point Accumulation for Imaging in Nanoscale Topography) for live-cell protein labeling. Our method employs the specific binding of cell-permeable fluorogenic dyes to genetically encoded protein tags. We engineered three mutants of the bacterial lipocalin Blc that possess different affinities to a fluorogenic dye and exhibit a strong increase in fluorescence intensity upon binding. This allows for rapid labeling and washout of intracellular targets on a time scale from seconds to a few minutes. We demonstrate an order of magnitude higher photostability of the fluorescence signal in comparison with spectrally similar fluorescent proteins. Protein-PAINT ensures prolonged super-resolution fluorescence microscopy of living cells in both single molecule detection and stimulated emission depletion regimes.

  4. Пуртов К.В., Осипова З.М., Петушков В.Н., Родионова Н.С., Царькова А.С., Котлобай А.А., Чепурных Т.В., Гороховатский А.Ю., Ямпольский И.В., Гительзон И.И. (2017). Структура оксилюциферина грибов – продукта реакции биолюминесценции. ДАН 477 (2), 245–248 [+]

    Определили структуру оксилюциферина грибов, провели ферментативную реакцию биолюминесценции в условиях насыщения по субстрату с дискретным мониторингом образующихся продуктов и установили структуры конечных продуктов реакции. На основе этих исследований разработали схему деградации оксилюциферина до конечных продуктов. Структуру оксилюциферина грибов подтвердили встречным синтезом.

  5. Jiang T., Yang X., Zhou Y., Yampolsky I., Du L., Li M. (2017). New bioluminescent coelenterazine derivatives with various C-6 substitutions. Org. Biomol. Chem. , [+]

    A series of new coelenterazine analogs with varying substituents at the C-6 position of the imidazopyrazinone core have been designed and synthesized for the extension of bioluminescence substrates. Some of them display excellent bioluminescence properties compared to DeepBlueC™ or native coelenterazine with both in vitro and in vivo biological evaluations, thus placing these derivatives among the most ideal substrates for Renilla bioluminescence applications.

  6. Yampolsky I.V. (2017). Fungal bioluminescence system: luciferin, luciferase and luciferin biosynthesis. FEBS J 284, 189 ID:1934
  7. Oba Y., Suzuki Y., Martins G.N.R., Carvalho R.P., Pereira T.A., Waldenmaier H.E., Kanie S., Naito M., Oliveira A.G., Dörr F.A., Pinto E., Yampolsky I.V., Stevani C.V. (2017). Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem. Photobiol. Sci. 16 (9), 1435–1440 [+]

    We previously showed that luminous fungi share a common mechanism in bioluminescence, and identified hispidin as a luciferin precursor in Neonothopanus nambi mycelium. Here we showed the presence of hispidin as a bioluminescent active compound at 25-1000 pmol g(-1) in the fruiting bodies of Mycena chlorophos, Omphalotus japonicus, and Neonothopanus gardneri. These results suggest that luminous mushrooms contain hispidin as a luciferin precursor. We also found that non-luminous "young" fruiting bodies exhibited luminescence by hispidin treatment. Furthermore, we observed a gradual luminescence enhancement of the cell-free fruiting body extract by the addition of hispidin biosynthetic components, namely caffeic acid, ATP and malonyl-CoA. These findings suggest that continuous weak glow of luminous mushrooms is regulated by slow recycling biosynthesis of hispidin.

  8. Petrushkina M., Gusev E., Sorokin B., Zotko N., Mamaeva A., Filimonova A., Kulikovskiy N., Maltsev Y., Yampolsky I., Guglya E., Vinokurov V., Namsaraev Z., Kuzmin D. (2017). Fucoxanthin production by heterokont microalgae. Algal Research 24 (A), 387–393 [+]

    Fucoxanthin is one of the most abundant carotenoids in nature. It is a major carotenoid in heterokont and haptophyte groups of algae that includes > 20 thousand species. Fucoxanthin also has many beneficial health effects including anticancer, antihypertensive, anti-inflammatory, and antiobesity effects. Microalgae are a promising source of fucoxanthin for commercial production. To find the most efficient fucoxanthin producing strains of microalgae, we isolated seven new strains of microalgae from multiple locations in Russia and Vietnam and studied their growth parameters and fucoxanthin content. Based on these results we isolated a novel strain of Mallomonas sp. (Synurophyceae) with the highest known content of fucoxanthin in biomass (26.6 mg g− 1 DW). The analysis of available data on heterokont and haptophyte algae shows that three groups of algae are the most promising for commercial production of fucoxanthin: diatoms (up to 21.67 mg g− 1DW), Synurophyceae (up to 26.6 mg g− 1 DW) and Prymnesiophyceae (up to 18.23 mg g− 1 DW).

  9. Kaskova Z.M., Dörr F.A., Petushkov V.N., Purtov K.V., Tsarkova A.S., Rodionova N.S., Mineev K.S., Guglya E.B., Kotlobay A., Baleeva N.S., Baranov M.S., Arseniev A.S., Gitelson J.I., Lukyanov S., Suzuki Y., Kanie S., Pinto E., DiMascio P., Waldenmaier H.E., Pereira T.A., Carvalho R.P., Oliveira A.G., Oba Y., Bastos E.L., Stevani C.V., Yampolsky I.V. (2017). Mechanism and Color Modulation of Fungal Bioluminescence. Sci Adv 3 (4), e1602847 [+]

    Bioluminescent fungi are spread throughout the globe, but details on their mechanism of light emission are still scarce. Usually, the process involves three key components: an oxidizable luciferin substrate, a luciferase enzyme, and a light emitter, typically oxidized luciferin, and called oxyluciferin. We report the structure of fungal oxyluciferin, investigate the mechanism of fungal bioluminescence, and describe the use of simple synthetic α-pyrones as luciferins to produce multicolor enzymatic chemiluminescence. A high-energy endoperoxide is proposed as an intermediate of the oxidation of the native luciferin to the oxyluciferin, which is a pyruvic acid adduct of caffeic acid. Luciferase promiscuity allows the use of simple α-pyrones as chemiluminescent substrates.

  10. Гугля Е.Б., Котлобай А.А., Секретова Е.К., Волкова П.В., Ямпольский И.В. (2017). Возможна ли биолюминесценция у растений? Вестник РГМУ 2, 61–71 [+]

    На основе открытого недавно механизма биолюминесценции высших грибов и сходства структуры люциферина грибов и некоторых метаболитов растений поставлена задача поиска растений, содержащих субстрат(ы) реакции грибной люминесценции. В результате скрининга коллекции растений европейской части России обнаружено 10 видов, экстракты листьев которых проявляют биолюминесцентную активность. Установлено, что изученные виды растений синтезируют не одно, а множество активных соединений. Все люминесцентные субстраты, содержащиеся в растениях, не идентичны грибному люциферину (3-гидроксигиспидину) и химически нестабильны, что препятствует выделению индивидуальных соединений. Данное исследование можно считать первым шагом в создании автономно люминесцентного растения на базе фермент-субстратной системы высших грибов.

  11. Oba Y., Stevani C.V., Oliveira A.G., Tsarkova A.S., Chepurnykh T.V., Yampolsky I.V. (2017). Selected Least Studied but not Forgotten Bioluminescent Systems. Photochem. Photobiol. 93 (2), 405–415 [+]

    Bioluminescence is a form of chemiluminescence generated by luminous organisms. Luminous taxa have currently been reported from about 800 genera and probably over 10,000 species in the world. On the other hand, their bioluminescent systems, including chemical structures of luciferins/chromophores and the genes encoding luciferases/photoproteins, have been elucidated from only a few taxonomic groups; e.g. beetles, bacteria, dinoflagellates, ostracods, and some cnidarians. Research efforts to understand unknown bioluminescence systems are being conducted around the world, and recently, for example, novel luciferin structures of luminous enchytraeid potworms and fungi were identified by the authors. In this paper, we review the current status and perspectives, in the context of post-genomic era, of most-likely novel but less-revealed bioluminescence systems of ten selected organisms; earthworm, parchment tubeworm, fireworm, scaleworm, limpet, millipede, brittle star, acorn worms, tunicate, and shark, which indeed are the next focus of our international collaboration. This article is protected by copyright. All rights reserved.

  12. Baranov M.S., Kaskova Z.M., Gritсenko R., Postikova S.G., Ivashkin P.E., Kislukhin A.A., Moskvin D.I., Mineev K.S., Arseniev A.S., Labas Yu.A., Yampolsky I.V. (2017). Synthesis of Panal Terpenoid Core. Synlett 28 (5), 583–588 [+]

    Panal is a natural bicyclic cadalane-type sesquiterpenoid with an unusual combination of stereocenters. It was isolated in 1988 as an alleged biosynthetic precursor of luciferin (a light-emitting molecule) in a bioluminescent fungus Panellus stipticus. Herein we present the first approach to the synthesis of the terpenoid skeleton of panal, which includes construction of five stereocenters, one of which is easily epimerizable. The key steps in the synthetic approach presented are high-pressure Diels–Alder reaction disobeying the ‘endo rule’, Barbier reductive allylation, and cyclization of trans-decalin ring via ring-closing metathesis.

  13. Ямпольский И.В., Петушков В.Н., Пуртов К.В., Родионова Н.С., Баранов М.С. (2016). Патент РФ №2596398 «Метод и реактивы для детекции активности люциферазы». , [+]

    Группа изобретений относится к области биохимии. Предложен метод выявления люциферазы в биологических образцах с использованием 3-гидроксигиспидина или 3-гидроксибиснориангонина в качестве люциферина. Предложено соединение для реализации указанного метода, представляющее собой 3-гидроксигиспидин. Кроме того, предложен метод выявления люциферазы в присутствии гиспидин-3-гидроксилазы в биологических образцах с использованием гиспидина или биснориангонина в качестве прекурсора люциферина и НАД(Ф)Н. Также предложен набор реактивов для реализации указанного метода, включающий гиспидин или биснориангонин и НАД(Ф)Н. Группа изобретений позволяет выявлять люциферазу грибов в биологических образцах и в дальнейшем может быть использована в широком спектре биолюминесцентных анализов in vivo и in vitro.

  14. Povarova N.V., Bozhanova N.G., Sarkisyan K.S., Gritcenko R., Baranov M.S., Yampolsky I.V., Lukyanov K.A., Mishin A.S. (2016). Docking-guided identification of protein hosts for GFP chromophore-like ligands. J. Mater. Chem. C 4, 3036–3040 [+]

    Synthetic analogs of the Green Fluorescent Protein (GFP) chromophore emerge as promising fluorogenic dyes for labeling in living systems. Here, we report the computational identification of protein hosts capable of binding to and enhancing fluorescence of GFP chromophore derivatives. Automated docking of GFP-like chromophores to over 3000 crystal structures of Escherichia coli proteins available in the Protein Data Bank allowed the identification of a set of candidate proteins. Four of these proteins were tested experimentally in vitro for binding with the GFP chromophore and its red-shifted Kaede chromophore-like analogs. Two proteins were found to possess sub-micromolar affinity for some Kaede-like chromophores and activate fluorescence of these fluorogens.

  15. Tsarkova A.S., Kaskova Z.M., Yampolsky I.V. (2016). A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems. Acc. Chem. Res. 49 (11), 2372–2380 [+]

    Bioluminescence, the ability of a living organism to produce light through a chemical reaction, is one of Nature's most amazing phenomena widely spread among marine and terrestrial species. There are various different mechanisms underlying the emission of "cold light", but all involve a small molecule, luciferin, that provides energy for light-generation upon oxidation, and a protein, luciferase, that catalyzes the reaction. Different species often use different proteins and substrates in the process, which suggests that the ability to produce light evolved independently several times throughout evolution. Currently, it is estimated that there are more than 30 different mechanisms of bioluminescence. Even though the chemical foundation underlying the bioluminescence phenomenon is by now generally understood, only a handful of luciferins have been isolated and characterized. Today, the known bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. A pressing need for new bioluminescent analytical techniques with a wider range of practical applications stimulates the search and chemical studies of new bioluminescent systems. In the past few years two such systems were unraveled: those of the earthworms Fridericia heliota and the higher fungi. The luciferins of these two systems do not share structural similarity with the previously known ones. This Account will survey structure elucidation of the novel luciferins and identification of their mechanisms of action. Fridericia luciferin is a key component of a novel ATP-dependent bioluminescence system. Structural studies were performed on 0.005 mg of natural substance and revealed its unusual extensively modified peptidic nature. Elucidation of Fridericia oxyluciferin revealed that oxidative decarboxylation of a lysine fragment of luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as a light emitter. Along with luciferin, a number of its natural analogs were found in the extracts of worm biomass. They occurred to be highly unusual modified peptides comprising a set of amino acids, including threonine, aminobutyric acid, homoarginine, unsymmetrical N,N-dimethylarginine and extensively modified tyrosine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and raise novel questions concerning their biosynthetic origin. Also in this Account we discuss identification of the luciferin of higher fungi 3-hydroxyhispidin which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  16. Kaskova Z.M., Tsarkova A.S., Yampolsky I.V. (2016). 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc.Rev. 45, 6048–6077 [+]

    Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of D-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.

  17. Tsarkova A.S., Dubinnyi M.A., Baranov M.S., Oguienko A.D., Yampolsky I.V. (2016). Nambiscalarane, a novel sesterterpenoid comprising a furan ring, and other secondary metabolites from bioluminescent fungus Neonothopanus nambi. Mend. Comm. 26 (3), 191–192 [+]

    In the course of isolation of fungal luciferin from bioluminescent fungus Neonothopanus nambi, structures of novel nambiscalarane, Aurisin Z, trans-α-hydroxy-γ-phenylbutyrolactone, methyl 4-butyramidobenzoate as well as known nambinones A and C and polyhydroxylated sterol were identified.

  18. Балеева Н.С., Ямпольский И.В., Баранов М.С. (2016). Борированные производные хромофора зеленого флуоресцентного белка как потенциальные флуоресцентные сенсоры. Биоорг. хим. 42 (4), 501–504 [+]

    Борированные производные хромофора зеленого флуоресцентного белка (4-(2-(дифторборил)-бензилиден)-1H-имидазол-5(4H)-оны) предложены в качестве потенциальных флуоресцентных сенсоров. Синтезированы модельные карбаматные производные борированных аналогов хромофора, содержащих аминогруппу в бензилиденовом фрагменте, а также проведен анализ их оптических свойств. Показано, что благодаря заметному смещению максимумов абсорбции и эмиссии, наблюдаемому при разрушении/введении карбаматной группы при атоме азота, подобные производные являются отличным претендентом на роль новых флуоресцентных сенсоров.

  19. Baleeva N.S., Yampolsky I.V., Baranov M.S. (2016). Conformationally Locked GFP Chromophore Derivatives as Potential Fluorescent Sensors. Russ. J. Bioorgan. Chem. 42 (4), 453–456 [+]

    We propose to use the conformationally locked GFP chromophore derivatives (4-(2(difluoroboryl)benzylidene)-1H-imidazol-5(4H)-ones) as potential fluorescent sensors. The model carbamate derivatives were synthesized and their fluorescent properties were studied. It was shown that the introduction/cleavage of the carbamate groups at the nitrogen atom led to the noticeable shifts in the absorption and emission maxima of the resultant derivatives, which makes them promising candidates for new fluorescent sensors.

  20. Walker C.L., Lukyanov K.A., Yampolsky I.V., Mishin A.S., Bommarius A.S., DurajThatte A.M., Azizi B., Tolbert L.M., Solntsev K.M. (2015). Fluorescence imaging using synthetic GFP chromophores. Curr Opin Chem Biol 27, 64–74 [+]

    Green fluorescent protein and related proteins carry chromophores formed within the protein from their own amino acids. Corresponding synthetic compounds are non-fluorescent in solution due to photoinduced isomerization of the benzylideneimidiazolidinone core. Restriction of this internal rotation by binding to host molecules leads to pronounced, up to three orders of magnitude, increase of fluorescence intensity. This property allows using GFP chromophore analogs as fluorogenic dyes to detect metal ions, proteins, nucleic acids, and other hosts. For example, RNA aptamer named Spinach, which binds to and activates fluorescence of some GFP chromophores, was proved to be a unique label for live-cell imaging of specific RNAs, endogenous metabolites and target proteins. Chemically locked GFP chromophores are brightly fluorescent and represent potentially useful dyes due to their small size and high water solubility.

  21. Yampolsky I.V., Lukyanov K.A., Baranov M.S. (2015). Boron-containing 5-arylidene-3,5-dihydro-4H-imidazol-4-ones. US 20150177254 A1 9 (133), 220 [+]

    Novel compounds of the general formula ##STR00001## are introduced, containing 5-arylidene-3,5-dihydro-4h-imidazol-4-one core. These compounds can be used for fluorescent staining of cell membranes, biomolecules' labeling in vivo and in vitro, a number of compounds also have photoacidic properties. This allows to use them, for example, as instruments to drastically change pH of a medium, and also as dynamic fluorescent probes for investigation of complex objects like proteins and micellae, as well as in studies of hydration dynamics and in photolithography.

  22. Purtov K.V., Petushkov V.N., Baranov M.S., Mineev K.S., Rodionova N.S., Kaskova Z.M., Tsarkova A.S., Petunin A.I., Bondar V.S., Rodicheva E.K., Medvedeva S.E., Oba Y., Arseniev A.S., Lukyanov S., Gitelson J.I., Yampolsky I.V. (2015). The Chemical Basis of Fungal Bioluminescence. Angew. Chem. Int. Ed. 127 (28), 8242–8246 [+]

    Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  23. Dubinnyi M.A., Kaskova Z.M., Rodionova N.S., Baranov M.S., Gorokhovatsky A.Y., Kotlobay A., Solntsev K.M., Tsarkova A.S., Petushkov V.N., Yampolsky I.V. (2015). Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of Fridericia Luciferin. Angew. Chem. Int. Ed. Engl. 54 (24), 7065–7067 [+]

    A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature. Oxidative decarboxylation of a lysine fragment of the luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as the light emitter.

  24. Dubinnyi M.A., Tsarkova A.S., Petushkov V.N., Kaskova Z.M., Rodionova N.S., Kovalchuk S.I., Ziganshin R.H., Baranov M.S., Mineev K.S., Yampolsky I.V. (2015). Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent Earthworm Fridericia heliota. Chem. Eur. J. 21 (10), 3942–3947 [+]

    We report isolation and structure elucidation of AsLn5, AsLn7, AsLn11 and AsLn12: novel luciferin analogs from the bioluminescent earthworm Fridericia heliota. They were found to be highly unusual modified peptides, comprising either of the two tyrosine-derived chromophores, CompX or CompY and a set of amino acids, including threonine, gamma-aminobutyric acid, homoarginine, and unsymmetrical N,N-dimethylarginine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and rise novel questions concerning their biosynthetic origin.

  25. Tsarkova A.S., Dubinnyi M.A., Baranov M.S., Petushkov N., Rodionova S., Zagudaylova B., Yampolsky I.V. (2015). Total synthesis of AsLn2 – a luciferin analogue from the Siberian bioluminescent earthworm Fridericia heliota. Mendeleev Communications 25 (2), 99–100 [+]

    Total synthesis of AsLn2, a luciferin analogue isolated from the Siberian bioluminescent earthworm F. heliota, was performed from (Z)-5-(2,3-dimethoxy-3-oxoprop-1-en-1-yl)-2-hydroxybenzoic acid in six steps.

  26. Baleeva N.S., Myannik K.A., Yampolsky I.V., Baranov M.S. (2015). Bioinspired Fluorescent Dyes Based on a Conformationally Locked Chromophore of the Fluorescent Protein Kaede. Eur.J.Org.Chem 2015 (26), 5716–5721 [+]

    A novel class of fluorescent dyes based on the conformationally locked heterocyclic core of the chromophore of the fluorescent protein Kaede was discovered. Introduction of a single conformational lock at the benzylidene fragment of the Kaede chromophore resulted in an increase in the fluorescence quantum yield (FQY) by one order of magnitude and a redshift of ca. 60 nm in the emission spectrum. Imposing the second lock at the ethylene fragment of the Kaede chromophore provided a further increase in the FQY. Locked analogues demonstrated bright and redshifted emission in a broad range of solvents, which makes them good candidates for a wide spectrum of fluorescent-labeling applications.

  27. Baranov M.S., Solntsev K.M., Baleeva N.S., Mishin A.S., Lukyanov S.A., Lukyanov K.A., Yampolsky I.V. (2014). Red-shifted fluorescent aminated derivatives of a conformationally locked GFP chromophore. Chem. Eur. J. 20 (41), 13234–41 [+]

    A novel class of fluorescent dyes based on conformationally locked GFP chromophore is reported. These dyes are characterized by red-shifted spectra, high fluorescence quantum yields and pH-independence in physiological pH range. The intra- and intermolecular mechanisms of radiationless deactivation of ABDI-BF2 fluorophore by selective structural locking of various conformational degrees of freedom were studied. A unique combination of solvatochromic and lipophilic properties together with "infinite" photostability (due to a dynamic exchange between free and bound dye) makes some of the novel dyes promising bioinspired tools for labeling cellular membranes, lipid drops and other organelles.

  28. Petushkov V.N., Dubinnyi M.A., Tsarkova A.S., Rodionova N.S., Baranov M.S., Kublitski V.S., Shimomura O., Yampolsky I.V. (2014). A Novel Type of Luciferin from the Siberian Luminous Earthworm Fridericia heliota: Structure Elucidation by Spectral Studies and Total Synthesis. Angew. Chem. Int. Ed. Engl. 53 (22), 5566–5568 [+]

    Press-release on this article: "Novel luciferin from Siberian bioluminescent worm".

  29. Baranov M.S., Fedyakina I.T., Shchelkanov M.Y., Yampolsky I.V. (2014). Ring-expanding rearrangement of 2-acyl-5-arylidene-3,5-dihydro-4H-imidazol-4-ones in synthetis of flutimide analogs. Tetrahedron 70 (23), 3714–3719 ID:1038
  30. Petushkov V.N., Dubinnyi M.A., Rodionova N.S., Nadezhdin K.D., Marques S.M., EstevesdaSilva J.C.G., Shimomura O., Yampolsky I.V. (2014). AsLn2, a luciferin-related modified tripeptide from the bioluminescent earthworm Fridericia heliota. Tetrahedron Lett. 55 (2), 463–465 ID:1039
  31. Petushkov V.N., Tsarkova A.S., Dubinnyi M.A., Rodionova N.S., Marques S.M., EstevesdaSilva J.C.G., Shimomura O., Yampolsky I.V. (2014). CompX, a luciferin-related tyrosine derivative from the bioluminescent earthworm Fridericia heliota. Tetrahedron Lett. 55 (2), 460–462 ID:1040
  32. Frizler M., Yampolsky I.V., Baranov M.S., Stirnberg M., Gütschow M. (2013). Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Org. Biomol. Chem. 11 (35), 5913–21 [+]

    An activity-based probe, containing an irreversibly locked GFP-like fluorophore, was synthesized and evaluated as an inhibitor of human cathepsins and, as exemplified with cathepsin K, it proved to be suitable for ex vivo imaging and quantification of cysteine cathepsins by SDS-PAGE.

  33. Pletnev V.Z., Pletneva N.V., Lukyanov K.A., Souslova E.A., Fradkov A.F., Chudakov D.M., Chepurnykh T., Yampolsky I.V., Wlodawer A., Dauter Z., Pletnev S. (2013). Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine. Acta Crystallogr. D Biol. Crystallogr. 69 (Pt 9), 1850–60 [+]
  34. Baranov M.S., Solntsev K.M., Lukyanov K.A., Yampolsky I.V. (2013). A synthetic approach to GFP chromophore analogs from 3-azidocinnamates. Role of methyl rotors in chromophore photophysics. Chem. Commun. (Camb.) 49 (51), 5778–80 [+]

    We have suggested a novel combinatorial approach for synthesis of otherwise inaccessible GFP chromophore analogs, and studied the influence of aliphatic substituents on their pH-dependent spectral properties. We found that the demethylation at C or N positions of the imidazolone ring leads to a decrease in the excited state lifetime.

  35. Baranov M.S., Lukyanov K.A., Yampolsky I.V. (2013). Synthesis of the chromophores of fluorescent proteins and their analogs. Russ. J. Bioorgan. Chem. 39 (3), 223–244 [+]

    Members of the green fluorescent protein (GFP) family are widely used in experimental biology as genetically encoded fluorescent tags. Chromophores of GFP-like proteins share a common structural core: 3,5-dihydro-4H-imidazol-4-one. This review covers synthetic approaches to 3,5-dihydro-4H-imidazol-4-ones, substituted at different positions. General, as well as specific methods, represented by single examples are considered. The most popular synthetic route to substituted 3,5-dihydro-4H-imidazol-4-ones includes synthesis of azlactones, followed by transformation into N-acyldehydroaminoacids and, finally, cyclization into target heterocycles. Accordingly, the review is divided into three parts: the first part covers syntheses of azlactones, the second part covers main approaches to N-acyldehydroaminoacids, and in the third part we summarize cyclizations of N-acyldehydroaminoacids, as well as all other approaches to 3,5-dihydro-4H-imidazol-4-ones.

  36. Baranov M.S., Lukyanov K.A., Ivashkin P.E., Yampolsky I.V. (2013). Efficient synthetic approach to fluorescent oxazole-4-carboxylate derivatives. Synt. Comm. 43 (17), 2337–2342 ID:1041
  37. Baranov M.S., Yampolsky I.V. (2013). Novel condensations of nitroacetic esters with aromatic aldehydes leading to 5-hydroxy-1,2-oxazin-6-ones. Tetrahedron Lett. 54 (7), 628–629 ID:1042
  38. Baranov M.S., Lukyanov K.A., Borissova A.O., Shamir J., Kosenkov D., Slipchenko L.V., Tolbert L.M., Yampolsky I.V., Solntsev K.M. (2012). Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins. J. Am. Chem. Soc. 134 (13), 6025–32 [+]

    Members of the green fluorescent protein (GFP) family form chromophores by modifications of three internal amino acid residues. Previously, many key characteristics of chromophores were studied using model compounds. However, no studies of intermolecular excited-state proton transfer (ESPT) with GFP-like synthetic chromophores have been performed because they either are nonfluorescent or lack an ionizable OH group. In this paper we report the synthesis and photochemical study of two highly fluorescent GFP chromophore analogues: p-HOBDI-BF2 and p-HOPyDI:Zn. Among known fluorescent compounds, p-HOBDI-BF(2) is the closest analogue of the native GFP chromophore. These irrreversibly (p-HOBDI-BF(2)) and reversibly (p-HOPyDI:Zn) locked compounds are the first examples of fully planar GFP chromophores, in which photoisomerization-induced deactivation is suppressed and protolytic photodissociation is observed. The photophysical behavior of p-HOBDI-BF2 and p-HOPyDI:Zn (excited state pK(a)'s, solvatochromism, kinetics, and thermodynamics of proton transfer) reveals their high photoacidity, which makes them good models of intermolecular ESPT in fluorescent proteins. Moreover, p-HOPyDI:Zn is a first example of "super" photoacidity in metal-organic complexes.

  39. Sarkisyan K.S., Yampolsky I.V., Solntsev K.M., Lukyanov S.A., Lukyanov K.A., Mishin A.S. (2012). Tryptophan-based chromophore in fluorescent proteins can be anionic. Sci Rep 2, 608 [+]

    Cyan fluorescent proteins (CFP) with tryptophan66-based chromophore are widely used for live cell imaging. In contrast to green and red fluorescent proteins, no charged states of the CFP chromophore have been described. Here, we studied synthetic CFP chromophore and found that its indole group can be deprotonated rather easily (pKa 12.4).We then reproduced this effect in the CFP mCerulean by placing basic amino acids in the chromophore microenvironment. As a result, green-emitting variant with an anionic chromophore and key substitution Val61Lys was obtained. This is the first evidence strongly suggesting that tryptophan-based chromophores in fluorescent proteins can exist in an anionic charged state. Switching between protonated and deprotonated Trp66 in fluorescent proteins represents a new unexplored way to control their spectral properties.

  40. Baranov M.S., Yampolsky I.V. (2012). Unusual transformations of anthranilic acid imidazolides. Chemistry of Heterocyclic compounds 48, 1108–1110 ID:1043
  41. Ivashkin P.E., Lukyanov K.A., Yampolsky I.V. (2011). Synthesis of biosynthetic precursors of chromophores of red fluorescent proteins. Russ. J. Bioorgan. Chem. 37 (4), 411–420 [+]
  42. Ivashkin P.E., Lukyanov K.A., Lukyanov S., Yampolsky I.V. (2011). A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form. J. Org. Chem. 76 (8), 2782–91 [+]

    Fluorescent proteins are widely used in modern experimental biology, but much controversy exists regarding details of maturation of different types of their chromophores. Here we studied possible mechanisms of DsRed-type red chromophore formation using synthetic biomimetic GFP-like chromophores, bearing an acylamino substituent, corresponding to an amino acid residue at position 65. We have shown these model compounds to readily react with molecular oxygen to produce a highly unstable DsRed-like acylimine, isolated in the form of stable derivatives. Under the same aerobic conditions an unusual red-shifted imide chromophore--a product of 4-electron oxidation of Gly65 residue--is formed. Our data showed that GFP chromophore is prone to autoxidation at position 65 Cα by its chemical nature with basic conditions being the only key factor required.

  43. Yampolsky I.V., Balashova T.A., Lukyanov K.A. (2009). Synthesis and spectral and chemical properties of the yellow fluorescent protein zFP538 chromophore. Biochemistry 48 (33), 8077–82 [+]

    Members of the green fluorescent protein (GFP) family become chromophoric through a unique pathway based on autocatalytic modifications of their amino acid residues. The yellow fluorescent protein zFP538 from the button polyp Zoanthus possesses unique spectral characteristics that are intermediate between those of the green and orange-red fluorescent proteins. In this study, we used chemical synthesis to resolve conflicting data from crystallographic and biochemical analyses of the zFP538 chromophore structure. We synthesized 2-(5-amino-1-oxopentyl)-5-(4-hydroxybenzylidene)-3-methyl-3,5-dihydro-4H-imidazol-4-one (5), which can spontaneously react intramolecularly to form cyclic imine (7). Compound 7 represents the native chromophore structure reported in the crystallographic study. We have also discovered an unusual isomerization of a 2-acylimidazolone to a 2,6-diketopiperazine derivative. The zFP538 chromophore is a complex system with intriguing chemical and spectral behavior, properties that have led to discrepancies in the interpretation of its structure. Our study supports the findings of previous crystallographic work, which postulated a cyclic imine chromophore structure within the native zFP538 protein, and also provides an explanation for experimental results obtained in the biochemical characterization of zFP538-derived chromopeptides.

  44. Bogdanov A.M., Mishin A.S., Yampolsky I.V., Belousov V.V., Chudakov D.M., Subach F.V., Verkhusha V.V., Lukyanov S., Lukyanov K.A. (2009). Green fluorescent proteins are light-induced electron donors. Nat. Chem. Biol.  (5), 459–461 [+]

    Proteins of the green fluorescent protein (GFP) family are well known owing to their unique biochemistry and extensive use as in vivo markers. We discovered that GFPs of diverse origins can act as light-induced electron donors in photochemical reactions with various electron acceptors, including biologically relevant ones. Moreover, via green-to-red GFP photoconversion, this process can be observed in living cells without additional treatment.

  45. Ivashkin P.E., Yampolsky I.V., Lukyanov K.A. (2009). Synthesis and properties of chromophores of fluorescent proteins. Russ. J. Bioorgan. Chem. 35 (6), 652–669 [+]

    We describe the existing approaches to the synthesis of 5-arylidene-3,5-dihydro-4H-imidazol-4-ones - model chromophores of fluorescent proteins and their nonnatural analogs. We discuss in detail the chemical (acid-base and redox reactions, cis-trans isomery, etc.) and spectral properties of the chromophores and the influence of substitutes and the environment. The study of synthetic chromophores allows for modeling of the photophysical characteristics of fluorescent proteins.

  46. Mishin A.S., Subach F.V., Yampolsky I.V., King W., Lukyanov K.A., Verkhusha V.V. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry 47 (16), 4666–73 [+]

    Green fluorescent protein (GFP) from a jellyfish, Aequorea victoria, and its mutants are widely used in biomedical studies as fluorescent markers. In spite of the enormous efforts of academia and industry toward generating its red fluorescent mutants, no GFP variants with emission maximum at more than 529 nm have been developed during the 15 years since its cloning. Here, we used a new strategy of molecular evolution aimed at generating a red-emitting mutant of GFP. As a result, we have succeeded in producing the first GFP mutant that substantially matures to the red-emitting state with excitation and emission maxima at 555 and 585 nm, respectively. A novel, nonoxidative mechanism for formation of the red chromophore in this mutant that includes a dehydration of the Ser65 side chain has been proposed. Model experiments showed that the novel dual-color GFP mutant with green and red emission is suitable for multicolor flow cytometry as an additional color since it is clearly separable from both green and red fluorescent tags.

  47. Yampolsky I.V., Kislukhin A.A., Amatov T.T., Shcherbo D., Potapov V.K., Lukyanov S., Lukyanov K.A. (2008). Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs. Bioorg. Chem. 36 (2), 96–104 [+]

    Green fluorescent protein (GFP) and homologous proteins possess a unique pathway of chromophore formation based on autocatalytic modification of their own amino acid residues. Green-to-red photoconvertible fluorescent protein Kaede carries His-Tyr-Gly chromophore-forming triad. Here, we describe synthesis of Kaede red chromophore (2-[(1E)-2-(5-imidazolyl)ethenyl]-4-(p-hydroxybenzylidene)-5-imidazolone) and its analogs that can be potentially formed by natural amino acid residues. Chromophores corresponding to the following tripeptides were obtained: His-Tyr-Gly, Trp-Tyr-Gly, Phe-Trp-Gly, Tyr-Trp-Gly, Asn-Tyr-Gly, Phe-Tyr-Gly, and Tyr-Tyr-Gly. In basic conditions they fluoresced red with relatively high quantum yield (up to 0.017 for Trp-derived compounds). The most red-shifted absorption peak at 595nm was found for the chromophore Trp-Tyr-Gly in basic DMSO. Surprisingly, in basic DMF non-aromatic Asn-derived chromophore Asn-Tyr-Gly demonstrated the most red-shifted emission maximum at 642 nm. Thus, Asn residue may be a promising substituent, which can potentially diversify posttranslational chemistry in GFP-like proteins.

  48. Evdokimov A.G., Pokross M.E., Egorov N.S., Zaraisky A.G., Yampolsky I.V., Merzlyak E.M., Shkoporov A.N., Sander I., Lukyanov K.A., Chudakov D.M. (2006). Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Rep. 7 (10), 1006–12 [+]

    Since the cloning of Aequorea victoria green fluorescent protein (GFP) in 1992, a family of known GFP-like proteins has been growing rapidly. Today, it includes more than a hundred proteins with different spectral characteristics cloned from Cnidaria species. For some of these proteins, crystal structures have been solved, showing diversity in chromophore modifications and conformational states. However, we are still far from a complete understanding of the origin, functions and evolution of the GFP family. Novel proteins of the family were recently cloned from evolutionarily distant marine Copepoda species, phylum Arthropoda, demonstrating an extremely rapid generation of fluorescent signal. Here, we have generated a non-aggregating mutant of Copepoda fluorescent protein and solved its high-resolution crystal structure. It was found that the protein beta-barrel contains a pore, leading to the chromophore. Using site-directed mutagenesis, we showed that this feature is critical for the fast maturation of the chromophore.

  49. Yampolsky I.V., Remington S.J., Martynov V.I., Potapov V.K., Lukyanov S., Lukyanov K.A. (2005). Synthesis and properties of the chromophore of the asFP595 chromoprotein from Anemonia sulcata. Biochemistry 44 (15), 5788–93 [+]

    A model compound for the chromophore within the purple nonfluorescent GFP-like chromoprotein asFP595 was synthesized. The postulated structure of the chromophore, 2-acetyl-4-(p-hydroxybenzylidene)-1-methyl-5-imidazolone, was taken from the high-resolution crystal structure analysis of intact asFP595 [Quillin, M. L., Anstrom, D., Shu, X., O'Leary, S., Kallio, K., Lukyanov, K. A., and Remington, S. J. (2005) Kindling Fluorescent Protein from Anemonia sulcata: Dark-State Structure at 1.38 A Resolution, Biochemistry 44, 5774-5787]. Erlenmeyer lactonization and oxidation of the methylene group attached to the heteroaromatic moiety with selenium dioxide were used at the key stages of the synthesis. The spectral properties of the model chromophore in solution and their dependence on the pH and polarity of the solvent were investigated. In water, the chromophore was found to exist in two forms, neutral and anionic, with a pK(a) of 7.1. In a dimethylformamide solution, the spectral properties of the anionic form closely match those of the native protein, demonstrating that under these conditions, the compound is an excellent model for the chromophore within native asFP595.

  50. Bulina M.E., Lukyanov K.A., Yampolsky I.V., Chudakov D.M., Staroverov D.B., Shcheglov A.S., Gurskaya N.G., Lukyanov S. (2004). New class of blue animal pigments based on Frizzled and Kringle protein domains. J. Biol. Chem. 279 (42), 43367–70 [+]

    The nature of coloration in many marine animals remains poorly investigated. Here we studied the blue pigment of a scyfoid jellyfish Rhizostoma pulmo and determined it to be a soluble extracellular 30-kDa chromoprotein with a complex absorption spectrum peaking at 420, 588, and 624 nm. Furthermore, we cloned the corresponding cDNA and confirmed its identity by immunoblotting and mass spectrometry experiments. The chromoprotein, named rpulFKz1, consists of two domains, a Frizzled cysteine-rich domain and a Kringle domain, inserted into one another. Generally, Frizzleds are members of a basic Wnt signal transduction pathway investigated intensely with regard to development and cancerogenesis. Kringles are autonomous structural domains found throughout the blood clotting and fibrinolytic proteins. Neither Frizzled and Kringle domains association with any type of coloration nor Kringle intrusion into Frizzled sequence was ever observed. Thus, rpulFKz1 represents a new class of animal pigments, whose chromogenic group remains undetermined. The striking homology between a chromoprotein and members of the signal transduction pathway provides a novel node in the evolution track of growth factor-mediated morphogenesis compounds.

  51. Pastukhov F.V., Yampolsky I.V., Bubnov Y.N. (2002). Allylboration of functionalized isoquinolines. J. Organomet. Chem  (657), 123–128 ID:1033
  52. Bubnov Y.N., Klimkina E.V., Zhun I.V., Pastukhov F.V., Yampolsky I.V. (2000). Allylic boron and zinc derivatives in synthesis and transformations of nitrogen heterocycles. Pure Appl. Chem. 72 (9), 1641–1644 ID:1034
  53. Bubnov Y.N., Pastukhov F.V., Yampolsky I.V., Ignatenko A.V. (2000). A convenient synthesis of 2,2-diallylated nitrogen heterocycles by allylboration of lactams. Eur.J.Org.Chem 200 (8), 1503–1505 ID:1035