Alina P. Ryumina

Education

PeriodCountry, cityEducation institutionAdditional info
2007–2012 Russian Federation, Moscow Lomonosov Moscow State University

Selected publications

  1. Sarkisyan K.S., Goryashchenko A.S., Lidsky P.V., Gorbachev D.A., Bozhanova N.G., Gorokhovatsky A.Y., Pereverzeva A.R., Ryumina A.P., Zherdeva V.V., Savitsky A.P., Solntsev K.M., Bommarius A.S., Sharonov G.V., Lindquist J.R., Drobizhev M., Hughes T.E., Rebane A., Lukyanov K.A., Mishin A.S. (2015). Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime. Biophys. J. 109 (2), 380–9 [+]

    Spectral diversity of fluorescent proteins, crucial for multiparameter imaging, is based mainly on chemical diversity of their chromophores. Recently we have reported, to our knowledge, a new green fluorescent protein WasCFP-the first fluorescent protein with a tryptophan-based chromophore in the anionic state. However, only a small portion of WasCFP molecules exists in the anionic state at physiological conditions. In this study we report on an improved variant of WasCFP, named NowGFP, with the anionic form dominating at 37°C and neutral pH. It is 30% brighter than enhanced green fluorescent protein (EGFP) and exhibits a fluorescence lifetime of 5.1 ns. We demonstrated that signals of NowGFP and EGFP can be clearly distinguished by fluorescence lifetime in various models, including mammalian cells, mouse tumor xenograft, and Drosophila larvae. NowGFP thus provides an additional channel for multiparameter fluorescence lifetime imaging microscopy of green fluorescent proteins.

    ID:1305
  2. Serebrovskaya E.O., Ryumina A.P., Boulina M.E., Shirmanova M.V., Zagaynova E.V., Bogdanova E.A., Lukyanov S.A., Lukyanov K.A. (2014). Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed. J Biomed Opt 19 (7), 071403 [+]

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

    ID:1280
  3. Ryumina A.P., Serebrovskaya E.O., Shirmanova M.V., Snopova L.B., Kuznetsova M.M., Turchin I.V., Ignatova N.I., Klementieva N.V., Fradkov A.F., Shakhov B.E., Zagaynova E.V., Lukyanov K.A., Lukyanov S.A. (2013). Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochim. Biophys. Acta 1830 (11), 5059–67 [+]

    Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells.

    ID:1279