Laboratory of biotechnology

Anatoliy Miroshnikov, member of the academy of sciencesdepart., +7(495)995-55-57#2102
Lev Patrushev, D.Sc, professorl. r.
Alexei Zinchenko, Ph.D.s. r.
Irina Konstantinova, Ph.D.s. r.
Roman Esipov, Ph.D.s. r.
Aleksej Kayushin, Ph.D.s. r.
Vladimir Leonov, Ph.D.s. r. f.+7(495)3362922
Tat'jana Murav'eva, Ph.D.s. r. f.+7(495)3307247
Inna Kuranovas. r. f.
Elena Gukasova, Ph.D.r.
Elena Dorofeeva, Ph.D.r.
Tat'jana Karjagina, Ph.D.r.
Ekaterina Moiseeva, Ph.D.r.
Inessa Muzykar., +7(916)126-78-63
Elena Nokel'r. f.+7()3306674
Ilya Fateev, Ph.D.r.
Tat'jana Kovalenkoj. r. f.+7(495)3363822
Elena Gordeevaj. r. f.+7(495)330-66-74
Tat'jana Melihovaj. r. f.+7()3306674
Maria Berzinaj. r.
Maria Kostrominaj. r. f.
Maria Kharitonovaj. r. f.
Diana ZayaraPhD
Elena Tuzovat. q. - lab. as.
Dmitry Aronovt. q. - lab.
Ol'ga Uznadzeeng.+7(495)335-71-93
Julija Kesslereng.+7()3306692
Alexander Breslaveng.
Dmitry Lykoshineng.
Anna Yarenchukeng.
Yuriy Prokopenkoeng.
Vladimir Timofeeveng.
Alla Barannikres. eng.+7(495)335-53-66
Ol'ga Lutoninares.
Natal'ja Patrushevares. eng.+7(495)3363822
Lyutsiya Dayanovares.
Yulia Abramchikres. eng.
Elena Trofimovak.
Dmitry Makarov, Ph.D.k.
Larisa Esipovasen. eng.

Former members:

Oleg Vasil'
Valerij Berzin, Ph.D.l. r. f.
Aleksandr Gurevich, D.Sc, professorl. r. f.
Ljudmila Eljakova, D.Scl. r. f.
Aleksej Nekrasov, Ph.D.s. r.
Marija Korosteleva, Ph.D.r. f.
Larisa Chupova, Ph.D.r. f.
Irina Ljubavinar.
Svetlana Vancevaeng.
Julija Rilovares.
Aleksandra Demehinares. eng.
Nadezhda Milovanovares. eng.

Selected publications

  1. Безуглов В.В., Грецкая Н.М., Клинов Д.В., Бобров М.Ю., Шибанова Е.Д., Акимов М.Г., Фомина-Агеева Е.В., Зинченко Г.Н., Баирамашвили Д.И., Мирошников А.И. (2009). Нанокомплексы рекомбинантных белков с полисиаловой кислотой. Получение, свойства и биологическая активность. Биоорг. хим. 35 (3), 350–356 ID:197
  2. Таран С.А., Верёвкина К.Н., Феофанов С.А., Мирошников А.И. (2009). Ферментативное трансгликозилирование природных и модифицированных нуклеозидов иммобилизованными термостабильными нуклеозидфосфорилазами из Geobacillus stearothermophilus. Биоорг. хим. 35 (6), 822–829 ID:198
  3. Kayushin A., Korosteleva M., Miroshnikov A. (2009). Large-scale solid-phase preparation of 3'-unprotected trinucleotide phosphotriesters--precursors for synthesis of trinucleotide phosphoramidites. Nucleosides Nucleotides Nucleic Acids 19 (10-12), 1967–76 [+]

    The approach to large-scale solid-phase synthesis of 3'-unprotected trinucleotide phosphotriesters has been developed. The trinucleotides have been synthesized in 5 g scale by phosphotriester approach using CPG with pore size 70A. Total yield of target products was 75-90%. The molar extinctions of trinucleotides at various wave-lengths were calculated; the experimental UV-spectra of trinucleotides show a good agreement with theoretical ones. The trinucleotides synthesized were used for synthesis of trinucleotide phosphoramidites - synthons for generation of DNA/peptide libraries.

  4. Yagodkin A., Azhayev A., Roivainen J., Antopolsky M., Kayushin A., Korosteleva M., Miroshnikov A., Randolph J., Mackie H. (2007). Improved synthesis of trinucleotide phosphoramidites and generation of randomized oligonucleotide libraries. Nucleosides Nucleotides Nucleic Acids 26 (5), 473–97 [+]

    A new method to produce a set of 20 high quality trinucleotide phosphoramidites on a 5-10 g scale each was developed. The procedure starts with condensation reactions of P-components with N-acyl nucleosides, bearing the 3 '-hydroxyl function protected with 2-azidomethylbenzoyl, to give fully protected dinucleoside phosphates 13. Upon cleavage of dimethoxytrityl group from 13, dinucleoside phosphates 16 are initially transformed into trinucleoside diphosphates 19 and then the 2-azidomethylbenzoyl is selectively removed under neutral conditions to generate trinucleoside diphosphates 5 in excellent yield. Subsequent 3 '-phosphitylation affords target trinucleotide phosphoramidites 7. When mutagenic oligonucleotides are synthesized employing mixtures of building blocks 7 as well as following the new synthetic protocol, representative oligonucleotide libraries are generated in good yields.

  5. Roivainen J., Elizarova T., Lapinjoki S., Mikhailopulo I.A., Esipov R.S., Miroshnikov A.I. (2007). An enzymatic transglycosylation of purine bases. Nucleosides Nucleotides Nucleic Acids 26 (8-9), 905–9 [+]

    An enzymatic transglycosylation of purine heterocyclic bases employing readily available natural nucleosides or sugar-modified nucleosides as donors of the pentofuranose fragment and recombinant nucleoside phosphorylases as biocatalysts has been investigated. An efficient enzymatic method is suggested for the synthesis of purine nucleosides containing diverse substituents at the C6 and C2 carbon atoms. The glycosylation of N(6)-benzoyladenine and N(2)-acetylguanine and its O(6)-derivatives is not accompanied by deacylation of bases.

  6. Chuvikovsky D.V., Esipov R.S., Skoblov Y.S., Chupova L.A., Muravyova T.I., Miroshnikov A.I., Lapinjoki S., Mikhailopulo I.A. (2006). Ribokinase from E. coli: expression, purification, and substrate specificity. Bioorg. Med. Chem. 14 (18), 6327–32 [+]

    Ribokinase (RK) was expressed in the Escherichia coli ER2566 cells harboring the constructed expression plasmid encompassing the rbsK gene, encoding ribokinase. The recombinant enzyme was purified from sonicated cells by double chromatography to afford a preparation that was ca. 90% pure and had specific activity of 75 micromol/min mg protein. Catalytic activity of RK: (i) is strongly dependent on the presence of monovalent cations (potassium>>>ammonium>cesium), and (ii) is cooperatively enhanced by divalent magnesium and manganese ions. Besides D-ribose and 2-deoxy-D-ribose, RK was found to catalyze the 5-O-phosphorylation of D-arabinose, D-xylose, and D-fructose in the presence of ATP, and potassium and magnesium ions; L-ribose and L-arabinose are not substrates for the recombinant enzyme. A new radiochemical method for monitoring the formation of D-pentofuranose-5-[32P]phosphates in the presence of [gamma-32P]ATP and RK is reported.

  7. Mikoulinskaia G.V., Gubanov S.I., Zimin A.A., Kolesnikov I.V., Feofanov S.A., Miroshnikov A.I. (2003). Purification and characterization of the deoxynucleoside monophosphate kinase of bacteriophage T5. Protein Expr. Purif. 27 (2), 195–201 [+]

    Deoxynucleoside monophosphate kinase (dNMP kinase) of bacteriophage T5 (EC was purified to apparent homogeneity from phage-infected Escherichia coli cells. Electrophoresis in sodium dodecyl sulfate-polyacrylamide gel showed that the enzyme has a molecular mass of about 29 kDa. The molecular mass of dNMP kinase estimated by analytical equilibrium ultracentrifugation turned out to be 29.14 +/- 3.03 kDa. These data suggest that the enzyme exists in solution as a monomer. The isoelectric point of dNMP kinase was found to be 4.2. The N-terminal amino acid sequence, comprising 21 amino acids, was determined to be VLVGLHGEAGSGKDGVAKLII. A comparison of this amino acid sequence and those of known enzymes with a similar function suggests the presence of a nucleotide-binding site in the sequenced region.

  8. Esipov R.S., Gurevich A.I., Chuvikovsky D.V., Chupova L.A., Muravyova T.I., Miroshnikov A.I. (2002). Overexpression of Escherichia coli genes encoding nucleoside phosphorylases in the pET/Bl21(DE3) system yields active recombinant enzymes. Protein Expr. Purif. 24 (1), 56–60 [+]

    The Escherichia coli genes encoding purine nucleoside phosphorylase, uridine phosphorylase, and thymidine phosphorylase were cloned into pET plasmids to generate highly effective E. coli BL21(DE3) strains producing each of these enzymes. Optimum conditions for biosynthesis of each enzyme as a soluble protein with intact biological activity were found. The crude preparations are approximately 80% pure and can be used immediately for enzymatic transglycosylation. The enzyme preparations were purified to homogeneity by two steps including fractional precipitation with ammonium sulfate and subsequent chromatography on Sephadex G-100 and DEAE-Sephacel.

  9. Sergeev N.V., Gloukhova N.S., Nazimov I.V., Gulyaev V.A., Shvets S.V., Donetsky I.A., Miroshnikov A.I. (2001). Monitoring of recombinant human insulin production by narrow-bore reversed-phase high-performance liquid chromatography, high-performance capillary electrophoresis and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. J Chromatogr A 907 (1-2), 131–44 [+]

    An analytical scheme for monitoring recombinant human insulin (rhI) production is suggested. The scheme includes high-performance separation micro-techniques (narrow-bore RP-HPLC, HPCE) based on different separation mechanisms and matrix-assisted laser desorption ionisation time-of-flight MS, and allows one to obtain unambiguous information about purity and primary structure of all intermediates of the rhI production. The use of this scheme at all production steps provided optimisation of certain technological parameters [conditions for a fusion protein (FP) refolding, temperature and duration of the FP cleavage with trypsin, conditions for carboxypeptidase B digestion of di-ArgB31-B32-insulin] and achievement of a high purity of the end-product. The proposed scheme may be used for solving various problems in monitoring production of other recombinant proteins.

  10. Миргородская О.А., Козьмин Ю.П., Титов М.И., Савельева Н.М., Кернер Р., Сонксен К., Ройпсторфф П., Мирошников А.И. (2000). Использование MALDI-MS для количественного анализа пептидов и белков. Биоорг. хим. 26 (9), 662–671 ID:206

Anatoliy Miroshnikov

  • Russia, Moscow, Ul. Miklukho-Maklaya 16/10 — On the map
  • IBCh RAS, build. 53, office. 6601
  • Phone: +7(495)995-55-57#2005
  • E-mail:

Fax: +7 (495) 330-74-10