Kirill N. Kashkin

Ph.D. (biological sciences)


Research fellow (Laboratory of human genes structure and functions)

Phone: +7 (495) 3306329

E-mail: kaschkin@ibch.ru

Selected publications

  1. Kashkin K.N., Chernov I.P., Didych D.A., Sverdlov E.D. (2017). Construction of a combinatorial library of chimeric tumor-specific promoters. BioTechniques 63 (3), 107–116 [+]

    Gene therapy is a fast-developing field of molecular medicine. New, effective, and cancer-specific promoters are in high demand by researchers seeking to treat cancer through expression of therapeutic genes. Here, we created a combinatorial library of tumor-specific chimeric promoter modules for identifying new promoters with desired functions. The library was constructed by randomly combining promoter fragments from eight human genes involved in cell proliferation control. The pool of chimeric promoters was inserted into a lentiviral expression vector upstream of the CopGFP reporter gene, transduced into A431 cells, and enriched for active promoters by cell sorting. The enriched library contained a remarkably high proportion of active and tumor-specific promoters. This approach to generating combinatorial libraries of chimeric promoters may serve as a useful tool for selecting highly specific and effective promoters for cancer research and gene therapy.

    ID:2001
  2. Kashkin K., Chernov I., Stukacheva E., Monastyrskaya G., Uspenskaya N., Kopantzev E., Sverdlov E. (2015). Cancer specificity of promoters of the genes controlling cell proliferation. J. Cell. Biochem. 116 (2), 299–309 [+]

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

    ID:2000