Копанцев Евгений Павлович

Кандидат биологических наук

Старший научный сотрудник (Лаборатория структуры и функций генов человека)

Тел.: +7 (495) 3307029

Эл. почта: kopantzev@ibch.ru

Избранные публикации

  1. Kashkin K., Chernov I., Stukacheva E., Monastyrskaya G., Uspenskaya N., Kopantzev E., Sverdlov E. (2015). Cancer specificity of promoters of the genes controlling cell proliferation. J. Cell. Biochem. 116 (2), 299–309 [+]

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  2. Alekseenko I.V., Pleshkan V.V., Kopantzev E.P., Stukacheva E.A., Chernov I.P., Vinogradova T.V., Sverdlov E.D. (2012). Activity of the upstream component of tandem TERT/survivin promoters depends on features of the downstream component. PLoS ONE 7 (10), e46474 [+]

    We spliced the promoters of the human telomerase and human survivin genes (PhTERT and PhSurv, respectively) widely used for gene therapy and known to have the broadest cancer type spectrum of activity. Two head-to-tail constructs were obtained: the PhTERT-PhSurv and PhSurv-PhTERT tandems. The splicing caused quantitative and qualitative changes in the promoter features. In both constructs, only the promoter proximal to the transcribed gene retained its ability to initiate transcription, whereas the distal promoter was silent, the phenomenon never reported before. However, the distal promoter modulated the activity of the proximal one by increasing its strength and causing an appearance of additional transcription start sites. We suggested that this suppression might be due to the presence of Sp1 transcription factor binding sites in both promoters and Sp1-bridges between these sites. Such Sp1-bridges might convert the tandem promoter linear DNA into a stem-loop structure. If localized inside the formed loop, the distal promoter could lose its ability to initiate transcription. To test this hypothesis, we constructed two modified double promoters, where the proximal PhSurv promoter was replaced either by a shortened variant of the survivin promoter (PhSurv269) or by the mouse survivin promoter. Both PhSurv substitutes were considerably shorter than PhSurv and had different numbers and/or positions of Sp1 sites. In modified tandems, transcription was initiated from both promoters. We also prepared two mutant forms of the PhSurv-PhTERT tandem with two or four Sp1 sites removed from the distal "long" PhSurv promoter. In the first case, the distal PhSurv promoter remained silent, whereas the removal of four Sp1 binding sites restored its activity. In the majority of studied cancer cell lines the efficiency of transcription from the hTERT-(shortened hSurv269) promoter tandem was markedly higher than from each constituent promoter. In normal lung fibroblast cells, the tandem promoter activity was considerably lower.

  3. Pavlyukov M.S., Antipova N.V., Balashova M.V., Vinogradova T.V., Kopantzev E.P., Shakhparonov M.I. (2011). Survivin monomer plays an essential role in apoptosis regulation. J. Biol. Chem. 286 (26), 23296–307 [+]

    Survivin was initially described as an inhibitor of apoptosis and attracted growing attention as one of the most tumor-specific genes in the human genome and a promising target for cancer therapy. Lately, it has been shown that survivin is a multifunctional protein that takes part in several crucial cell processes. At first, it was supposed that survivin functions only as a homodimer, but now data indicate that many processes require monomeric survivin. Moreover, recent studies reveal a special mechanism regulating the balance between monomeric and dimeric forms of the protein. In this paper we studied the mutant form of survivin that was unable to dimerize and investigated its role in apoptosis. We showed that survivin monomer interacts with Smac/DIABLO and X-linked inhibitor of apoptosis protein (XIAP) both in vitro and in vivo. Due to this feature, it protects cells from caspase-dependent apoptosis even more efficiently than the wild-type survivin. We also identified that mutant monomeric survivin prevents apoptosis-inducing factor release from the mitochondrial intermembrane space, protecting human fibrosarcoma HT1080 cells from caspase-independent apoptosis. On the other hand, our results indicate that only wild-type survivin, but not the monomer mutant form, enhances tubulin stability in cells. These findings suggest that survivin partly performs its functions as a monomer and partly as a dimer. The mechanism of dimer-monomer balance regulation may also work as a "switcher" between survivin functions and thereby explain remarkable functional diversities of this protein.

  4. Kopantzev E.P., Monastyrskaya G.S., Vinogradova T.V., Zinovyeva M.V., Kostina M.B., Filyukova O.B., Tonevitsky A.G., Sukhikh G.T., Sverdlov E.D. (2008). Differences in gene expression levels between early and later stages of human lung development are opposite to those between normal lung tissue and non-small lung cell carcinoma. Lung Cancer 62 (1), 23–34 [+]

    We, for the first time, directly compared gene expression profiles in human non-small cell lung carcinomas (NSCLCs) and in human fetal lung development. Previously reported correlations of gene expression profiles between lung cancer and lung development, deduced from matching data on mouse development and human cancer, have brought important information, but suffered from different timing of mouse and human gene expression during fetal development and fundamental differences in tumorigenesis in mice and humans. We used the suppression subtractive hybridization technique to subtract cDNAs prepared from human fetal lung samples at weeks 10-12 and 22-24 and obtained a cDNA library enriched in the transcripts more abundant at the later stage. cDNAs sequencing and RT-PCR analysis of RNAs from human fetal and adult lungs revealed 12 differentially transcribed genes: ADH1B, AQP1, FOLR1, SLC34A2, CAV1, INMT, TXNIP, TPM4, ICAM-1, HLA-DRA, EFNA1 and HLA-E. Most of these genes were found up-regulated in mice and rats at later stages than in human lung development. In surgical samples of NSCLC, these genes were down-regulated as compared to surrounding normal tissues and normal lungs, thus demonstrating opposite expression profiles for the genes up-regulated during fetal lung development.