Group of Biomedical Materials

The Group deals with development and study of biodegradable materials (scoffolds) based on natural and synthetic polymers for tissue engineering and regenerative medicine.  These biomaterials could be designed in different forms, such as nano- and microfibers, hydrogels, microbeads (microcarriers for cell culture). To study in vitro cytotoxicity and other properties, various cell cultures are used, including fibroblasts, osteoblasts-like cells, mesenchyme stem cells etc.).  Moreover, the Group is engaged in evaluation of anticancer drug delivery systems, namely nanoparticles, micelles, liposomes, polyelectrolyte nanocontainers etc.

On the other hand, novel 3D in vitro models based on multicellular tumor spheroids have been developed. These tumor spheroids are promising for evaluation of mechanisms of various anticancer therapies (chemotherapy, photodynamic therapy etc.) mechanisms as well as for screening of novel anticancer drugs and drug delivery systems directly before preclinical tests.  This approach allows to reduce costs of preclinical tests and to minimize a number of experimental animals used for this purpose.

The Laboratory cooperates with the laboratories of the Institute, as well as with University of Liege (Belgium), Polytechnical University of Nancy ENSAIA-INPL (France), University of Strasbourg (France), Queen’s University of Kingston (Canada) etc.

The group was founded as an independent division in 2017, having separated from the Laboratory of Polymer for Biology.

The Group is engaged in development some biodegradable matrices for regenerative medicine (Fig. 1), anticancer drug delivery systems (Fig. 2) (3D  in vitro models  based on tumor  spheroids, microencapsulated tumor spheroids ( Fig. 3), tumor spheroids prepared from monolayer cell culture using RGD-peptides (Fig. 4), spheroids from tumor and normal cells generated using  RGD-peptides (Fig. 5)).



Fig. 1. Growth of mouse fibroblasts L929 on biodegradable poly-L.D-lactide microcarriers (A), microfibers (B), in macroporous hydrogels based on chitosan and hyaluronic acid (С), and human mesenchymal stem cells on chitosan films treated with DC discharged plasma (D). Cells are stained with vital Сalcein AM dye (in green), while the matrix structure is visualized with DAPI dye (in blue). SEM (A,B) and laser confocal microscopy (С,D).


Fig. 2. Polysaccharide microcontainers for anticancer drug delivery and microcontainer accumulation within M-3 mouse melanoma cells in 2D (monolayer culture) and 3D (spheroids) in vitro models.



Fig. 3. Tumor spheroids from human breast adenocarcinoma MCF-7 cells generated within biocompatible alginate-chitosan microcapsules.



Fig. 4. Generation of tumor spheroids by RGD-induced cell self-assembly after adding RGD-peptide directly to monolayer cultures.



Fig. 5. Two techniques (LOT и Microencapsulation) to generate spheroids from tumor and normal cells using RGD-platform.

Selected publications

  1. Drozdova M.G., ZaytsevaZotova D.S., Akasov R.A., Golunova A.S., Artyukhov A.A., Udartseva O.O., Andreeva E.R., Lisovyy D.E., Shtilman M.I., Markvicheva E.A. (2017). Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation. Mater Sci Eng C Mater Biol Appl 75, 1075–1082 [+]

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample.

  2. Haq S., Samuel V., Haxho F., Akasov R., Leko M., Burov S.V., Markvicheva E., Szewczuk M.R. (2017). Sialylation facilitates self-assembly of 3D multicellular prostaspheres by using cyclo-RGDfK(TPP) peptide. Onco Targets Ther 10, 2427–2447 [+]

    Prostaspheres-based three dimensional (3D) culture models have provided insight into prostate cancer (PCa) biology, highlighting the importance of cell-cell interactions and the extracellular matrix (EMC) in the tumor microenvironment. Although these 3D classical spheroid platforms provide a significant advance over 2D models mimicking in vivo tumors, the limitations involve no control of assembly and structure with only limited spatial or glandular organization. Here, matrix-free prostaspheres from human metastatic prostate carcinoma PC3 and DU145 cell lines and their respective gemcitabine resistant (GemR) variants were generated by using cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK(TPP)).

  3. Akasov R., Gileva A., ZaytsevaZotova D., Burov S., Chevalot I., Guedon E., Markvicheva E. (2016). 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly. Biotechnol. Lett. , [+]


    To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique.


    Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively.


    The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.

  4. Akasov R., Haq S., Haxho F., Samuel V., Burov S.V., Markvicheva E., Neufeld R.J., Szewczuk M.R. (2016). Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget , [+]

    Multicellular tumor spheroids (MTS) have been at the forefront of cancer research, designed to mimic tumor-like developmental patterns in vitro. Tumor growth in vivo is highly influenced by aberrant cell surface-specific sialoglycan structures on glycoproteins. Aberrant sialoglycan patterns that facilitate MTS formation are not well defined. Matrix-free spheroids from breast MCF-7 and pancreatic PANC1 cancer cell lines and their respective tamoxifen (TMX) and gemcitabine (Gem) resistant variants were generated using the RGD platform of cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK (TPP)). MCF-7 and MCF-7 TMX cells formed tight spheroids both in the classical agarose- and RGD-based platforms while all PANC1 cells formed loose aggregates. Using lectin histochemistry staining, sialidase assay, neuraminidase (Vibrio cholerae) and oseltamivir phosphate (OP) neuraminidase inhibitor treatments, MCF-7 and PANC1 cells and their drug-resistant variants expressed different sialic acid (SA) content on their cell surfaces. α-2,3- and α-2,6-sialic acid surface residues facilitated spheroid formation under cyclo-RGDfK(TPP)-induced self-assembly. Pretreatment with α-2,3-SA specific Maackia amurensis (MAL-II) lectin, α-2,6-SA specific Sambucus nigra (SNA) lectin, and exogenous α-2,6-SA specific neuraminidase (Vibrio cholerae) dose-dependently reduced spheroid volume. OP enhanced cell aggregation and compaction forming spheroids. PANC1 and MDA-MB231 xenograft tumors from untreated and OP-treated RAGxCγ double mutant mice expressed significantly higher levels of α-2,3-SA over α-2,6-SA. MCF-7 spheroids also expressed a high α-2,3-SA to α-2,6-SA ratio. These results suggest that the relative levels of specific sialoglycan structures on the cell surface correlate with the ability of cancer cells to form avascular multicellular tumor spheroids and in vivo xenograft tumors.

  5. Akasov R., ZaytsevaZotova D., Burov S., Leko M., Dontenwill M., Chiper M., Vandamme T., Markvicheva E. (2016). Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. Int J Pharm 506 (1-2), 148–157 [+]

    Development of novel anticancer formulations is a priority challenge in biomedicine. However, in vitro models based on monolayer cultures (2D) which are currently used for cytotoxicity tests leave much to be desired. More and more attention is focusing on 3D in vitro systems which can better mimic solid tumors. The aim of the study was to develop a novel one-step highly reproducible technique for multicellular tumor spheroid (MTS) formation using synthetic cyclic RGD-peptides, and to demonstrate availability of the spheroids as 3D in vitro model for antitumor drug testing. Cell self-assembly effect induced by addition of both linear and cyclic RGD-peptides directly to monolayer cultures was studied for 12 cell lines of various origins, including tumor cells (e.i. U-87 MG, MCF-7, M-3, HCT-116) and normal cells, in particular L-929, BNL.CL2, HepG2. Cyclo-RGDfK and its modification with triphenylphosphonium cation (TPP), namely cyclo-RGDfK(TPP) in a range of 10-100μM were found to induce spheroid formation. The obtained spheroids were unimodal with mean sizes in a range of 60-120μm depending on cell line and serum content in culture medium. The spheroids were used as 3D in vitro model, in order to evaluate cytotoxicity effects of antitumor drugs (doxorubicin, curcumin, temozolomide). The developed technique could be proposed as a promising tool for in vitro test of novel antitumor drugs.

  6. Attia M.F., Anton N., Akasov R., Chiper M., Markvicheva E., Vandamme T.F. (2016). Biodistribution and Toxicity of X-Ray Iodinated Contrast Agent in Nano-emulsions in Function of Their Size. Pharm. Res. 33 (3), 603–14 [+]

    This study aimed to investigate the impact of the size of X-ray iodinated contrast agent in nano-emulsions, on their toxicity and fate in vivo.

  7. Demina T.S., Akopova T.A., Vladimirov L.V., Zelenetskii A.N., Markvicheva E.A., Grandfils C.h. (2016). Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide. Mater Sci Eng C Mater Biol Appl 59, 333–8 [+]

    Amphiphilic chitosan-g-poly(d,l-lactide) copolymers have been manufactured via solid-state mechanochemical copolymerization and tailored to design polyester-based microspheres for tissue engineering. A single-step solid-state reactive blending (SSRB) using low-temperature co-extrusion has been used to prepare these copolymers. These materials have been valorized to stabilize microspheres processed by an oil/water emulsion evaporation technique. Introduction of the copolymers either in water or in the oil phase of the emulsion allowed to replace a non-degradable emulsifier typically used for microparticle preparation. To enhance cell adhesion, these copolymers were also tailored to bring amino-saccharide positively charged segments to the microbead surface. Size distribution, surface morphology, and total microparticle yield have been studied and optimized as a function of the copolymer composition.

  8. Stetciura I.Y., Yashchenok A., Masic A., Lyubin E.V., Inozemtseva O.A., Drozdova M.G., Markvichova E.A., Khlebtsov B.N., Fedyanin A.A., Sukhorukov G.B., Gorin D.A., Volodkin D. (2015). Composite SERS-based satellites navigated by optical tweezers for single cell analysis. Analyst 140 (15), 4981–6 [+]

    Herein, we have designed composite SERS-active micro-satellites, which exhibit a dual role: (i) effective probes for determining cellular composition and (ii) optically movable and easily detectable markers. The satellites were synthesized by the layer-by-layer assisted decoration of silica microparticles with metal (gold or silver) nanoparticles and astralen in order to ensure satellite SERS-based microenvironment probing and satellite recognition, respectively. A combination of optical tweezers and Raman spectroscopy can be used to navigate the satellites to a certain cellular compartment and probe the intracellular composition following cellular uptake. In the future, this developed approach may serve as a tool for single cell analysis with nanometer precision due to the multilayer surface design, focusing on both extracellular and intracellular studies.

  9. Akasov R., Borodina T., Zaytseva E., Sumina A., Bukreeva T.V., Burov S., Markvicheva E. (2015). Ultrasonically Assisted Polysaccharide Microcontainers for Delivery of Lipophilic Antitumor Drugs: Preparation and in vitro Evaluation. ACS Appl Mater Interfaces 7 (30), 16581–9 [+]

    High toxicity, poor selectivity, severe side effects are major drawbacks of anticancer drugs. Various drug delivery systems could be proposed to overcome these limitations. The aim of the study was to fabricate polysaccharide microcontainers (MC) loaded with thymoquinone (TQ) by one-step ultrasonication technique and to study their cellular uptake and cytotoxicity in vitro. Two MC fractions with a mean size of 500 nm (MC-0.5) and 2 µM (MC-2) were prepared and characterized. Uptake of the MC by mouse melanoma M-3 cells was evaluated in both 2D (monolayer culture) and 3D (multicellular tumor spheroids) models by confocal microscopy, flow cytometry and fluorimetry. The higher cytotoxicity of the TQ-MC-0.5 sample than that of the TQ-MC-2 fraction was in a good correlation with higher MC-0.5 accumulation in the cells. The MC-0.5 beads were more promising than the MC-2 particles because of a higher cellular uptake in both 2D and 3D models, an enhanced antitumor effect and a lower non-specific toxicity.

  10. Privalova A., Markvicheva E., Sevrin C.h., Drozdova M., Kottgen C., Gilbert B., Ortiz M., Grandfils C.h. (2015). Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering. J Biomed Mater Res A 103 (3), 939–48 [+]

    Microcarriers have been proposed in tissue engineering, namely for bone, cartilage, skin, vascular, and central nervous system. Although polyester-based microcarriers have been already used for this purpose, their surface properties should be improved to provide better cell growth. The goal of this study was to prepare microbeads based on poly(D,L-lactide) acid, poly(L-lactide) acid, and to study cell behavior (adhesion, spreading, growth, and proliferation) in function of microbead topography and surface chemistry. To improve L-929 fibroblasts adhesion, microbead surface has been modified with three polycations: chitosan, poly(2-dimethylamino ethylmethacrylate) (PDMAEMA), or chitosan-g-oligolactide copolymer (chit-g-OLA). Although modification of the microbead surface with chitosan and PDMAEMA was performed through physical adsorption on the previously prepared microbeads, chit-g-OLA copolymer was introduced directly during microbead processing. This simple approach (1) bypass the use of an emulsifier (polyvinyl alcohol, PVA); (2) avoid surface "contamination" with PVA molecules limiting a control of the surface characteristics. In vitro study of the growth of mouse fibroblasts on the microbeads showed that both surface topography and chemistry affected cell attachment, spreading, and proliferation. Cultivation of L-929 fibroblasts for 7 days resulted in the formation of a 3D cell-scaffold network.

  11. Privalova A.M., Uglanova S.V., Kuznetsova N.R., Klyachko N.L., Golovin Yu.I., Korenkov V.V., Vodovozova E.L., Markvicheva E.A. (2015). Microencapsulated Multicellular Tumor Spheroids as a Tool to Test Novel Anticancer Nanosized Drug Delivery Systems In Vitro. J. Nanosci. Nanotechnol. 15 (7), 4806–4814 [+]

    In the study, MCF-7 human breast adenocarcinoma cells were used to study cytotoxicity of novel anticancer nanosized formulations, such as docetaxel-loaded nanoemulsion and liposomal formulation of a lipophilic methotrexate (MTX) prodrug. In Vitro study of cytotoxicity was carried out in 2 models, namely using 3D In Vitro model based on multicellular tumor spheroids (MTS) and 2D monolayer culture. MTS were generated by tumor cell cultivation within alginate-oligochitosanmicro-capsules. In the case of the monolayer culture, cell viability was found to be 25, 18 and 12% for the samples containing nanoemulsion at concentrations 20, 300 and 1000 nM of docetaxel, respectively, after 48 hs incubation. For MTS these values were higher, namely 33, 23 and 18%, respectively. Cytotoxicity of liposomal MTX prodrug-based formulation with final concentration of 1, 2, 10, 50, 100 and 1000 nM in both models was also studied. MTX liposomal formulation demonstrated lower cytotoxicity on MTS compared to intact MTX. Moreover, MTS were also more resistant to both liposomal formulation and intact MTX than the monolayer culture. Thus, at 1000 nM MTX in the liposomal form, cell viability in MTS was 1.4-fold higher than that in the monolayer culture. MTS could be proposed as a promising tool to test novel anticancer nanosized formulations In Vitro.

  12. Марквичева Е.А., Дроздова М.Г., Акасов Р.А., ЗайцеваЗотова Д.С. (2011). Биосовместимые материалы в тканевой инженерии, В кн: Клеточные технологии для регенеративной медицины / под ред.: Г.П.Пинаева, М.С.Богдановой, А.М.Кольцовой. – СПБ.: Изд-во Политехн.ун-та. , 103–126 ID:735
  13. Балабашин Д., ЗайцеваЗотова Д., Топорова В., Панина А., Марквичева Е., Свирщевская Е., Алиев Т. (2011). Способы увеличения продукции рекомбинантных антител в клеточных линиях CHO DG44. Современные проблемы науки и образования  (5), [+]

    The cell line CHO DG44 producing recombinant antibodies(Abs) to human tumor necrosis factor-alpha has been obtained. The influence of cell inoculation density and cultivation protocols on the level of Ab biosynthesis has been studied. The highest Ab yields have been observed at the inoculation density 3×106 cells/ml. The alternative method to cells-in-suspension cultivation has been proposed, which is the cell cultivation in calcium alginate hydrogel microgranules or alginate chitosan semipermeable microcapsules. It has been shown that the Ab production level by CHO DG44 cells entrapped into polymer microcapsules exceeds that of the cells-in-suspension cultivation regime.

  14. ZaytsevaZotova D., Balysheva V., Tsoy A., Drozdova M., Akopova T., Vladimirov L., Chevalot I., Marc A., Goergen J.L., Markvicheva E. (2011). Biocompatible Smart Microcapsules Based on Chitosan‐Poly (vinyl alcohol) Copolymers for Cultivation of Animal Cells. Advanced Biomaterials , [+]

    In this study, two novel chitosan-graft-poly(vinyl alcohol) copolymers are synthesized and used as water-soluble at physiological conditions polycations for preparation of smart microcapsules. The microcapsules provide growth and proliferation of eight mammalian cell lines, including hybridoma and tumor cells, at long-term cell cultivation in vitro. The microcapsules are stable in cell culture medium but can be dissolved by changing pH value of the medium (up to 8.0–8.2), thus making possible a simple release of the entrapped cells. Monoclonal antibody production by encapsulated hybridoma cells is demonstrated. Cultivation of tumor cells within the microcapsules allows the formation of 3D multicellular spheroids, which can be proposed as an in vitro model for anticancer drug screening.

  15. Borodina T., Grigoriev D., Markvicheva E., Mohwald H., Shchukin D. (2011). Vitamin E Microspheres Embedded Within a Biocompatible Film for Planar Delivery. Advanced Engineering Materials 13 (3), B123–B130 [+]

    We demonstrate a new one-batch approach to the fabrication of a biocompatible Ca-alginate film with embedded vitamin E-loaded microspheres that could be used for planar dermal drug delivery. Stable vitamin E microspheres, coated with gum acacia, are produced by ultrasonic treatment of a two-phase liquid system. The Fourier transform infrared spectroscopy indicates an interaction between biopolymer functional groups induced by ultrasonication. Confocal laser fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate a homogeneous microsphere distribution within the Ca-alginate polymer film. The kinetics of in vitro vitamin E release found for the polymer film with entrapped microspheres was much more sustained (100% in 96 h) compared to the polymer film with vitamin E embedded in the free state (100% in 5 h). The novelty of the proposed research involves the ultrasonic fabrication of loaded microspheres and formation of biodegradable coating directly doped with microspheres.

  16. Tsoy A., ZaytsevaZotova D., Edelweiss E., Bartkowiak A., Goergen J.L., Vodovozova E., Markvicheva E. (2010). Microencapsulated multicellular tumor spheroids as a novel in vitro model for drug screening. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 4 (3), 243–250 [+]

    To generate multicellular tumor spheroids (MTS) based on human breast adenocarcinoma MCF-7 cells and to study them as a novel in vitro model for anticancer drug screening, a technique for cell microencapsulation in biocompatible alginatechitosan microcapsules has been used in this study. Using the MTSbased on the MCF-7 cells methotrexate (MTX) cytotoxicity has been investigated. A set of MTS with an average size of 150, 200 and 300 μm was prepared as a function of cultivation time. Cell viability was evaluated after MTS incubation in cultivation medium containing various MTX concentrations (1, 2, 10, 50 and 100 nM) for 48 h. MTS were shown to be markedly more resistant to MTX than the monolayer culture. The increase of the spheroid size was in correlation with the enhanced MTS resistance to MTX. Thus, at 100 nM MTX a number of viable cells in MTS with the size of 300 μm was 2.5fold higher than that in the monolayer culture. It is suggested that the cells microencapsulated into MTS can better mimic cell behavior in small solid tumors compared to the monolayer culture. In the future MTS could be proposed as a novel in vitro model for anticancer drug screening.

  17. Бовин Н.В., Марквичева Е.А., Селина О.Е. (2009). Сорбент для удаления антител из цельной крови и способ его получения. Патент RU 2360707. , ID:400
  18. Borodina T.N., Rumsh L.D., Kunizhev S.M., Sukhorukov G.B., Vorozhtsov G.N., Feldman B.M., Rusanova A.V., Vasileva T.V., Strukova S.M., Markvicheva E.A. (2008). Entrapment of herbal extracts into biodegradable microcapsules. Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry 2 (2), 176–182 [+]

    The microcapsules with entrapped herbal water-soluble extracts of plantain Plantago major and calendula Calendula officinalis L. (PCE) were prepared by layer-by-layer (LbL)-adsorption of carrageenan and  oligochitosan onto CaCO3 microparticles with their subsequent dissolving after the treatment of EDTA. Entrapment of PCE was performed by using adsorption and co-precipitation techniques. The co-precipitation provided better entrapment of PCE into the carbonate matrix compared to adsorption. In vitro release kinetics (AGJ) was studied using artificial gastric juice. Using the model of acetate ulcer in rats it has been demonstrated that PCE released from the microcapsules accelerates gastric tissue repair.

  19. Markvicheva E., Stashevskaya K., Strukova S., Prudchenko I., Rusanova A., Makarova A., Vasilieva T., Bespalova J., Grandfils C.h. (2006). Biodegradable microparticles loaded with thrombin receptor agonist peptide for gastric ulcer treatment in rats. J. Drug Del. Sci. Tech 16 (4), 321–325 [+]


    The aim of the current paper was to elaborate an immobilization method of thrombin receptor agonist peptide (TRAP-6) in biodegradable biocompatible poly(d,l)-lactide-co-glycolide (PLGA) microparticles and to demonstrate the effect of the entrapped peptide for tissue repair, namely for a gastric ulcer treatment in rats. TRAP-6 was entrapped in polymer using w/o/w double emulsion-evaporation technique. The morphology of empty and TRAP-6 loaded microparticles was evaluated by light and scanning electron microscopy (SEM). In vitro release kinetics profile of TRAP-6 from microparticles was studied by HPLC. To investigate gastric mucosal protection effect in vivo, TRAP-6-loaded microparticles were administered in a rat stomach after a previous mucosal injury (a gastric ulcer). Microparticles with entrapped TRAP-6 were found to reduce both an inflammation and proliferation phases of wound healing, and thus accelerated tissue repair in rats.


Elena Markvicheva

  • Russia, Moscow, Ul. Miklukho-Maklaya 16/10 — On the map
  • IBCh RAS, build. 34, office. 422
  • Phone: +7(495)336-06-00
  • E-mail: