Press-room / Digest
Cardioviruses bind glycyl-tRNA synthetase for mRNA translation
Viruses often use non-standard mechanisms to translate their mRNAs, which makes it possible to suppress the translation of cellular mRNAs and capture the entire cellular translation apparatus for the synthesis of viral proteins. In a paper published in Nucleic Acids Research, the authors from IBCh and colleagues from the Justus Liebig University (Germany) found that picornaviruses from the genus of cardioviruses (for example, encephalomyocarditis virus, EMCV) have two structures similar to glycyl tRNA in the 5’ and 3’ untranslated regions of mRNA. It has been shown that these elements bind glycyl tRNA synthetase (GARS), and this is necessary for efficient translation of viral mRNA. The interaction of the GARS dimer with 5’ and 3'HTO is likely to cause mRNA cyclization.
Lung Delivery of Antibiotics Using Metal-Organic Frameworks Shows Promise Against Respiratory Infections
Researchers from the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, MEPhI, the Kurchatov Institute, and Uppsala University have developed a novel nanoparticle system for the effective delivery of rifampicin to the lungs. Using metal-organic frameworks (MOFs) with a MIL-101(Cr) structure, the team achieved high antibiotic loading and sustained release, offering a potential breakthrough in treating bacterial lung infections, including tuberculosis. The study was published in the journal Biomedical Materials. Learn more
For the first time, Russian scientists have experimentally confirmed the supramolecular structure of natural humic substances
The Group of Molecular Ecology, in close cooperation with scientists from some Pushchino Institutes, has for the first time obtained experimental data on the supramolecular structure of natural humic substances using a set of original techniques. It has been established that various types of morphological supramolecular nanostructures are associated with a certain chemical composition and various ecological and biogeochemical functions of humic substances. The work was published in the prestigious scientific journal Chem. Biol. Technol. Agric., IF-5.2, Q1 (Springer Nature publishing house).
Identification of animal venoms by Raman spectroscopy
Using Raman spectroscopy, a comparative analysis of venoms from various animals and a number of substances of different nature (not-venoms) was carried out. Animal venom smuggling is a global problem. It is often impossible to prove that the smuggled material is an animal venom. Raman spectroscopy can be used to implement a quick and simple method for identifying dry animal venoms. We demonstrated that Raman spectroscopy combined with principal component analysis (PCA) can distinguish between crude venom and not-venom samples, as well as cluster different animal venoms based on their similarities. The proposed method appears promising for on-site venom identification, for example, at border controls. Learn more
Biotechnologies based on the fungal bioluminescence pathway
The journal Trends in Biotechnology published a review devoted to biotechnologies based on the fungal bioluminescence pathway (FBP). Unlike luminescent reporter systems that require the addition of a substrate, FBP uses the natural metabolite caffeic acid to maintain continuous, autonomous luminescence. This allows for the production of autonomously luminescent living organisms and overcomes the key limitations of previous technologies. The review examines recent advances in the creation of luminescent plants and FBP-based biosensors and discusses the potential applications of this reporter system in science and the economy. Learn more

